ASYMPTOTICS OF EIGENVALUES AND EIGENFUNCTIONS OF THE STURM–LIOUVILLE OPERATOR WITH SINGULAR POTENTIAL ON A STAR GRAPH. I
- Authors: Zuev K.P1
-
Affiliations:
- Lomonosov Moscow State University
- Issue: Vol 61, No 2 (2025)
- Pages: 162-176
- Section: ORDINARY DIFFERENTIAL EQUATIONS
- URL: https://ogarev-online.ru/0374-0641/article/view/299122
- DOI: https://doi.org/10.31857/S0374064125020026
- EDN: https://elibrary.ru/HXKTOT
- ID: 299122
Cite item
Abstract
References
- Ruedenberg, K. Free-electron network model for conjugated systems. I. Theory / K. Ruedenberg, W.S. Scherr // J. Chem. Physics. — 1953. — V. 21, № 9. — P. 1565–1581.
- Kuchment, P. Graph models for waves in thin structures / P. Kuchment // Waves in Random Media. — 2002. — V. 12, № 4. — P. R1–R24.
- Kuchment, P. Quantum graphs: I. Some basic structures / P. Kuchment // Waves in Random Media. — 2004. — V. 14, № 1. — P. 107–128.
- Proceedings of Symposia in Pure Mathematics. V. 77. Analysis of Graphs and its Applications / Eds. P. Exner, J.P. Keating, P. Kuchment [et al.]. — Cambridge : Amer. Math. Soc., 2007. — 718 p.
- Pokorny, Yu.V., Penkin, O.M., Pryadiev, V.L. [et al.], Differentsial’nyye uravneniya na geometricheskikh grafakh (Differential Equations on Geometrical Graphs), Moscow: Fizmatlit, 2005
- Yurko, V. Inverse spectral problems for Sturm–Liouville operators on graphs / V. Yurko // Inverse Problems. — 2005. — V. 21, № 3. — P. 1075–1086.
- Bondarenko, N. Inverse problems for the differential operator on the graph with a cycle with different orders on different edges / N. Bondarenko // Tamkang J. Math. — 2015. — V. 46, № 3. — P. 229–243.
- Burlutskaya, M.Sh., Zvereva, M.B., and Kamenskii, M.I., Boundary value problem on a geometric star-graph with a nonlinear condition at a node, Math. Notes, 2023, vol. 114, no. 2, pp. 275–279.
- Sadovnichiy, V.A., Sultanaev, Y.T., and Akhtyamov, A.M., Inverse Sturm–Liouville problem with nonseparated boundary conditions on a geometric graph, Differ. Equat., 2019, vol. 55, no. 2, pp. 194–204.
- Zhabko, A.P. Uniqueness solution to the inverse spectral problem with distributed parameters on the graph–star / A.P. Zhabko, K.B. Nurtazina, V.V. Provotorov // Vestnik of Saint Petersburg University. Appl. Math. Comput. Sci. Control Proc. — 2020. — V. 16, № 2. — P. 129–143.
- Savchuk, A.M. and Shkalikov, A.A., Sturm–Liouville operators with singular potentials, Math. Notes, 1999, vol. 66, no. 6, pp. 741–753.
- Savchuk, A.M. and Shkalikov, A.A., Sturm–Liouville operators with distribution potentials, Transactions of the Moscow Math. Soc., 2003, vol. 64, pp. 143–192.
- Savchuk, A.M. and Sadovnichaya, I.V., Spectral analysis of one-dimensional Dirac system with summable potential and Sturm–Liouville operator with coefficient–distributions, Sovrem. matematika. Fynd. napravlenia, 2020, vol. 66, no. 3, pp. 373–530.
- Savchuk, A.M., Pryamyye i obratnyye spektral’nyye zadachi dlya operatora Shturma–Liuvillya i sistemy Diraka (Direct and Inverse Spectral Problems for the Sturm–Liouville Operator and the Dirac System), Dissertation for the degree of Doctor of Physical and Mathematical Sciences, 2019.
Supplementary files
