ASYMPTOTICS OF EIGENVALUES AND EIGENFUNCTIONS OF THE STURM–LIOUVILLE OPERATOR WITH SINGULAR POTENTIAL ON A STAR GRAPH. I

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Spectral problems on a star-graph consisting of three edges with a Sturm–Liouville operator defined on each of them are investigated. The spectral properties of such operators have been studied, in particular, asymptotic formulas for eigenvalues and eigenfunctions of the operator with Dirichlet boundary conditions at free ends and continuity and Kirchhoff conditions at a common vertex have been obtained. The potential in the Sturm–Liouville problem is assumed to be singular, it is a derivative of a quadratically summable function in sense of distributions.

About the authors

K. P Zuev

Lomonosov Moscow State University

Email: kizuev02@gmail.com
Russia

References

  1. Ruedenberg, K. Free-electron network model for conjugated systems. I. Theory / K. Ruedenberg, W.S. Scherr // J. Chem. Physics. — 1953. — V. 21, № 9. — P. 1565–1581.
  2. Kuchment, P. Graph models for waves in thin structures / P. Kuchment // Waves in Random Media. — 2002. — V. 12, № 4. — P. R1–R24.
  3. Kuchment, P. Quantum graphs: I. Some basic structures / P. Kuchment // Waves in Random Media. — 2004. — V. 14, № 1. — P. 107–128.
  4. Proceedings of Symposia in Pure Mathematics. V. 77. Analysis of Graphs and its Applications / Eds. P. Exner, J.P. Keating, P. Kuchment [et al.]. — Cambridge : Amer. Math. Soc., 2007. — 718 p.
  5. Pokorny, Yu.V., Penkin, O.M., Pryadiev, V.L. [et al.], Differentsial’nyye uravneniya na geometricheskikh grafakh (Differential Equations on Geometrical Graphs), Moscow: Fizmatlit, 2005
  6. Yurko, V. Inverse spectral problems for Sturm–Liouville operators on graphs / V. Yurko // Inverse Problems. — 2005. — V. 21, № 3. — P. 1075–1086.
  7. Bondarenko, N. Inverse problems for the differential operator on the graph with a cycle with different orders on different edges / N. Bondarenko // Tamkang J. Math. — 2015. — V. 46, № 3. — P. 229–243.
  8. Burlutskaya, M.Sh., Zvereva, M.B., and Kamenskii, M.I., Boundary value problem on a geometric star-graph with a nonlinear condition at a node, Math. Notes, 2023, vol. 114, no. 2, pp. 275–279.
  9. Sadovnichiy, V.A., Sultanaev, Y.T., and Akhtyamov, A.M., Inverse Sturm–Liouville problem with nonseparated boundary conditions on a geometric graph, Differ. Equat., 2019, vol. 55, no. 2, pp. 194–204.
  10. Zhabko, A.P. Uniqueness solution to the inverse spectral problem with distributed parameters on the graph–star / A.P. Zhabko, K.B. Nurtazina, V.V. Provotorov // Vestnik of Saint Petersburg University. Appl. Math. Comput. Sci. Control Proc. — 2020. — V. 16, № 2. — P. 129–143.
  11. Savchuk, A.M. and Shkalikov, A.A., Sturm–Liouville operators with singular potentials, Math. Notes, 1999, vol. 66, no. 6, pp. 741–753.
  12. Savchuk, A.M. and Shkalikov, A.A., Sturm–Liouville operators with distribution potentials, Transactions of the Moscow Math. Soc., 2003, vol. 64, pp. 143–192.
  13. Savchuk, A.M. and Sadovnichaya, I.V., Spectral analysis of one-dimensional Dirac system with summable potential and Sturm–Liouville operator with coefficient–distributions, Sovrem. matematika. Fynd. napravlenia, 2020, vol. 66, no. 3, pp. 373–530.
  14. Savchuk, A.M., Pryamyye i obratnyye spektral’nyye zadachi dlya operatora Shturma–Liuvillya i sistemy Diraka (Direct and Inverse Spectral Problems for the Sturm–Liouville Operator and the Dirac System), Dissertation for the degree of Doctor of Physical and Mathematical Sciences, 2019.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».