FINITE VELOCITY OF PROPAGATION OF PERTURBATIONS FOR A ONE-DIMENSIONAL WAVE INTEGRO-DIFFERENTIAL EQUATION WITH A FRACTIONAL-EXPONENTIAL MEMORY FUNCTION


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper studies a Volterra integro-differential equation, the main part of which is a one-dimensional wave equation perturbed by an integral operator of the Volterra convolution type (wave equation with memory). The kernel function of the integral operator is a sum of fractional exponential functions (Rabotnov functions) with positive coefficients. The issue of the influence of the integral operator on the velocity of propagation of disturbances in the initial value problem for the wave equation with memory is studied. The Volterra integro-differential equation under study describes oscillations of a one-dimensional viscoelastic rod, as well as the process of heat propagation in media with memory (Gurtin–Pipkin equation).

About the authors

D. V. Georgievskii

Lomonosov Moscow State University; Moscow Center of Fundamental and Applied Mathematics

Email: georgiev@mech.math.msu.su
Russia; Russia

N. A. Rautian

Lomonosov Moscow State University; Moscow Center of Fundamental and Applied Mathematics

Email: nadezhda.rautian@math.msu.ru
Russia; Russia

References

  1. Amendola, G. Thermodynamics of Materials with Memory. Theory and Applications / G. Amendola, M. Fabrizio, J.M. Golden. — New-York ; Dordrecht ; Heidelberg ; London : Springer, 2012. — 576 p.
  2. Ильюшин, А.А. Основы математической теории термовязкоупругости / А.А. Ильюшин, Б.Е. Победря. — М. : Наука, 1970. — 280 c.
  3. Il’yushin, A.A. and Pobedrya, B.E., Osnovy matematicheskoi teorii termovyazkouprugosti (Mathematical Theory of Thermoviscoelasticity), Moscow: Nauka, 1970.
  4. Работнов, Ю.Н. Элементы наследственной механики твердых тел / Ю.Н. Работнов. — М. : Наука, 1977. — 384 c.
  5. Rabotnov, Yu.N., Elementy nasledstvennoi mekhaniki tverdykh tel (Elements of Hereditary Mechanics of Solids), Moscow: Nauka, 1977.
  6. Георгиевский, Д.В. Модели теории вязкоупругости / Д.В. Георгиевский. — М. : Ленанд, 2023. — 144 c.
  7. Georgievskii, D.V., Modeli teorii vyazkouprugosti (Models of Viscoelasticity Theory). Moscow: Lenand, 2023.
  8. Gurtin, M.E. General theory of heat conduction with finite wave speed / M.E. Gurtin, A.C. Pipkin // Arch. Rat. Mech. Anal. — 1968. — V. 31. — P. 113–126.
  9. Власов, В.В. Спектральный анализ функционально-дифференциальных уравнений / В.В. Власов, Н.А. Раутиан. — М. : МАКС Пресс, 2016. — 488 с.
  10. Vlasov, V.V. and Rautian, N.A., Spektral’nyi analiz funktsional’no-differentsial’nykh uravnenii (Spectral Analysis of Functional Differential Equations), Moscow: MAKS Press, 2016.
  11. Vlasov, V.V. Investigation of integro-differential equations by methods of spectral theory / V.V. Vlasov, N.A. Rautian // J. Math. Sci. — 2024. — V. 278, № 1. — P. 55–81.
  12. Раутиан, Н.А. Полугруппы, порождаемые вольтерровыми интегро-дифференциальными уравнениями / Н.А. Раутиан // Дифференц. уравнения. — 2020. — Т. 56, № 9. — С. 1226–1244.
  13. Rautian, N.A., Semigroups generated by Volterra integro-differential equations, Differ. Equat., 2020, vol. 56, no. 9, pp. 1193–1211.
  14. Раутиан, Н.А. О свойствах полугрупп, порождаемых вольтерровыми интегро-дифференциальными уравнениями с ядрами, представимыми интегралами Стилтьеса / Н.А. Раутиан // Дифференц. уравнения. — 2021. — Т. 57, № 9. — С. 1255–1272.
  15. Rautian, N.A., On the properties of semigroups generated by Volterra integro-differential equations with kernels representable by Stieltjes integrals, Differ. Equat., 2021, vol. 57, no. 9, pp. 1231–1248.
  16. Владимиров, В.С. Уравнения математической физики / В.С. Владимиров. — М. : Наука, 1988. — 512 c.
  17. Vladimirov, V.S., Uravneniya matematicheskoy fiziki (Equations of Mathematical Physics), Moscow: Nauka, 1988.
  18. Владимиров, В.С. Обобщенные функции в математической физике / В.С. Владимиров. — М. : Наука, 1979. — 320 c.
  19. Vladimirov, V.S., Oboshchenniye funkcii v matematicheskoy fizike (Generalized Functions in Mathematical Physics), Moscow: Nauka, 1979.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».