CLASSIFICATION OF THE QUASILINEAR SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS AND ITS APPLICATION FOR NORMALIZATION OF SYSTEMS IN CRITICAL CASE OF BOGDANOV–TAKENS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Two-dimensional autonomous system with a quasihomogenous polynomial of a first degree and weight (1, 2) in an unperturbed part is considered. The classification of an unperturbed parts is provided. According to it, the set of polynomials is constructively divided into eight equivalence classes with respect to quasihomogenuos zero degree substitutions. In each class the respresentatives, called the canonical forms, are determined. All structures of the generalized normal forms for the so far unstudied system with one of the canonical forms in its unperturbed part are obtained. Normalization in the system with unperturbed part (𝑥2, 𝑎𝑥1𝑥2+𝑏𝑥31) is performed using method of the resonant equations and sets. This significantly improves the already obtained results of the research in one of the critical cases of Bogdanov–Takens classification.

About the authors

V. V. Basov

Saint Petersburg State University

Email: vlvlbasov@rambler.ru
Russia

References

  1. Басов, В.В. Обобщённая нормальная форма и формальная эквивалентность двумерных систем с нулевым квадратичным приближением. I / В.В. Басов, А.В. Скитович // Дифференц. уравнения. — 2003. — Т. 39, № 8. — С. 1016–1029.
  2. Basov, V.V. and Skitovich, A.V., A generalized normal form and formal equivalence of two-dimensional systems with quadratic zero approximation. I, Differ. Equat., 2003, vol. 39, no. 8, pp. 1067–1081.
  3. Басов, В.В. Обобщённая нормальная форма двумерных систем ОДУ с линейно-квадратичной невозмущенной частью // В.В. Басов, А.А. Федотов / Вестн. С.-Петерб. ун-та. Математика. Механика. Астрономия. — 2007. — Т. 1, № 1. — С. 13–33.
  4. Basov, V.V. and Fedotov, A.A., Generalized normal forms for two-demensional systems of ordinary differential equations with linear and quadratic unperturbed parts, Vestnik St. Petersburg Univ., Mathematics, 2007, vol. 40, no. 1, pp. 6–26.
  5. Басов, В.В. Обобщённая нормальная форма и формальная эквивалентность систем дифференциальных уравнений с нулевыми характеристическими числами / В.В. Басов // Дифференц. уравнения. — 2003. — Т. 39, № 2. — С. 154–170.
  6. Basov, V.V., Generalized normal forms and formal equivalence of systems of differential equations with zero eigenvalues, Differ. Equat., 2003, vol. 39, no. 2, pp. 154–170.
  7. Басов, В.В. Обобщённые нормальные формы систем ОДУ с линейно-кубической невозмущенной частью / В.В. Басов, Л.С. Михлин // Дифференц. уравнения и процессы управления. — 2012. — № 2. — C. 129–153.
  8. Basov, V.V. and Mikhlin, L.S., Generalized normal forms of systems of ODE with linear-cubic unperturbed part, Differ. Uravn. i Protsesy Upravlenia (Differential Equations and Control Processes), 2012, no. 2, pp. 129–153.
  9. Басов, В.В. Обобщённые нормальные формы систем ОДУ с невозмущенной частью (𝑥2,±𝑥2𝑛−1 1 ) / В.В. Басов, Л.С. Михлин // Вестн. С.-Петерб. ун-та. Математика. Механика. Астрономия. — 2015. — Т. 2 (60), № 1. — С. 14–22.
  10. Basov, V.V. and Mikhlin, L.S., Generalized normal forms of ODE systems with unperturbed part (𝑥2,±𝑥2𝑛−1 1 ), Vestn. S.-Peterb. un-ta. Matematika. Mekhanika. Astronomiya, 2015, vol. 2 (60), no. 1, pp. 14–22.
  11. Басов, В.В. Обобщённые нормальные формы систем обыкновенных дифференциальных уравнений с квазиоднородным многочленом (𝛼𝑥21 +𝑥2, 𝑥1, 𝑥2) в невозмущенной части / В.В. Басов, А.В. Зефиров // Вестн. С.-Петерб. ун-та. Математика. Механика. Астрономия. — 2021. — Т. 8 (66), № 1. — С. 12–28.
  12. Basov, V.V. and Zefirov, A.V., Generalized normal forms of the systems of ordinary differential equations with a quasi-homogeneous polynomial (𝑎𝑥21 +𝑥2, 𝑥1𝑥2) in the unperturbed part, Vestnik St. Petersburg Univ., Mathematics, 2021, vol. 54, no. 1, pp. 8–21.
  13. Kokubu, H. Linear grading function and further redaction of normal forms / H. Kokubu, H. Oka, D. Wang // J. Differ. Equat. — 1996. — V. 132, № 2. — P. 293–318.
  14. Басов, В.В. Двумерные однородные кубические системы: классификация и нормальные формы — I / В.В. Басов // Вестн. С.-Петерб. ун-та. Математика. Механика. Астрономия. — 2016. — Т. 3 (61), № 2. — С. 181–195.
  15. Basov, V.V., Two-dimensional homogeneous cubic systems: classification and normal forms. I, Vestnik St. Petersburg Univ., Mathematics, 2016. vol. 49, no. 2, pp. 99–110.
  16. Baider, A. Further reduction of the Takens–Bogdanov normal form / A. Baider, J. Sanders // J. Differ. Equat. — 1992. — V. 99. — P. 205–244.
  17. Takens, F. Singularities of vector fields / F. Takens // IHES. — 1974. — V. 43, № 2. — P. 47–100.
  18. Богданов, Р.И. Версальная деформация особой точки векторного поля на плоскости в случае нулевых собственных чисел / Р.И. Богданов // Функц. анализ и его прил. — 1975. — Т. 9, № 2. — С. 37–65.
  19. Bogdanov, R.I., Versal deformations of a singular point of a vector field on the plane in the case of zero eigenvalues, Funktsional. Anal. i Prilozhen., 1975, vol. 9, no. 2, pp. 37–65.
  20. Басов, В.В. Двумерные однородные кубические системы: классификация и нормальные формы — II / В.В. Басов // Вестн. С.-Петерб. ун-та. Математика. Механика. Астрономия. — 2016. — Т. 3 (61), № 3. — С. 355–371.
  21. Basov, V.V., Two-dimensional homogeneous cubic systems: classification and normal forms. II, Vestn. St. Petersburg Univ., Mathematics, 2016. vol. 49, no. 3, pp. 204–218.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».