ASYMPTOTIC BEHAVIOR OF THE SOLUTION OF THE CAUCHY PROBLEM FOR A NONLINEAR EQUATION
- Authors: Umarov K.G1,2
-
Affiliations:
- Chechen Academy of Sciences
- Chechen State Pedagogical University
- Issue: Vol 60, No 10 (2024)
- Pages: 1350-1367
- Section: PARTIAL DERIVATIVE EQUATIONS
- URL: https://ogarev-online.ru/0374-0641/article/view/270539
- DOI: https://doi.org/10.31857/S0374064124100059
- EDN: https://elibrary.ru/JTOWLX
- ID: 270539
Cite item
Abstract
About the authors
Kh. G Umarov
Chechen Academy of Sciences; Chechen State Pedagogical University
Email: umarov50@mail.ru
Grozny, Russia; Grozny, Russia
References
- Kudryavtsev, L.D., Kurs matematicheskogo analiza (Course of Mathematical Analysis), vol. 1, Moscow: Yurait, 2009.
- Filippov, A.P., Kolebaniya deformiruyemykh sistem (Oscillations of Deformable Systems), Moscow: Machinostroenie, 1970.
- Erofeev, V.I., Kazhaev, V.V., and Semerikova, N.P., Volny v sterzhnyakh. Dispersiya. Dissipatsiya. Nelineynost’ (Waves in Rods. Dispersion. Dissipation. Nonlinearity), Moscow: Fizmatlit, 2002.
- Faradzhev, A.S., On a nonlocal inverse boundary value problem for the sixth-order Boussinesq equation with nonlocal time-integral conditions of the second kind, Applied Math. & Phys., 2022, vol. 54, no. 3, pp. 141–153.
- Zhou, J. Well-posedness of solutions for the sixth-order Boussinesq equation with linear strong damping and nonlinear source / J. Zhou, H. Zhang // J. Nonlin. Sci. — 2021. — V. 31, № 76. — P. 1–61.
- Dunford, N. and Schwartz, J.T., Linear Operators. Part I: General Theory, New York: Interscience, 1958.
- Vasilyev, V.V., Crane, S.G., and Piskarev, S.I., Operator semigroups, cosine operator functions and linear differential equations, VINITI: Results of Science and Technology. Series Math. Analysis, 1990, vol. 28, pp. 87–202.
- Иосида, К. Функциональный анализ / К. Иосида ; пер. с англ. В.М. Волосова. — М. : Мир, 1967. — 624 с.
- Yosida, K., Functional Analysis, Berlin; G¨ottingen; Heidelberg: Springer-Verlag, 1965.
- Travis, C.C. Cosine families and abstract nonlinear second order differential equations / C.C. Travis, G.F. Webb // Acta Math. Acad. Sci. Hungaricae. — 1978. — V. 32. — P. 75–96.
- Yuming Qin. Integral and Discrete Inequalities and their Applications. V. II: Nonlinear Inequalities / Yuming Qin. — Switzerland : Springer, 2016. — 1083 p.
- Benjamin, T.B. Model equations for long waves in nonlinear dispersive systems / T.B. Benjamin, J.L. Bona, J.J. Mahony // Philos. Trans. Roy. Soc. London. — 1972. — V. 272. — P. 47–78.
- Filatov, A.N. and Sharova, L.V., Integral’nyye neravenstva i teoriya nelineynykh kolebaniy (Integral Inequalities and the Theory of Nonlinear Oscillations), Moscow: Nauka, 1976.
Supplementary files
