INITIAL PROBLEMS FOR THE ABSTRACT LEGENDRE EQUATION CONTAINING TWO PARAMETERS
- Authors: Glushak A.V1
-
Affiliations:
- Belgorod State National Research University
- Issue: Vol 60, No 10 (2024)
- Pages: 1312-1324
- Section: PARTIAL DERIVATIVE EQUATIONS
- URL: https://ogarev-online.ru/0374-0641/article/view/270536
- DOI: https://doi.org/10.31857/S0374064124100028
- EDN: https://elibrary.ru/JTZRKD
- ID: 270536
Cite item
Abstract
About the authors
A. V Glushak
Belgorod State National Research University
Email: aleglu@mail.ru
Russia
References
- Carroll, R.W. Singular and Degenerate Cauchy Problems / R.W. Carroll, R.E. Showalter. — New York : Academic Press, 1976. — 333 p.
- Sitnik, S.M. and Shishkina, E.L., Metod operatorov preobrazovaniya dlya differentsial’nykh uravnenii s operatorami besselya (Method of Transformation Operators for Differential Equations with Bessel Operators), Moscow: Fizmatlit, 2019.
- Glushak, A.V. and Pokruchin, O.A., Criterion for the solvability of the Cauchy problem for an abstract Euler–Poisson–Darboux equation, Differ. Equat., 2016, vol. 52, no. 1, pp. 39–57.
- Glushak, A.V., Family of Bessel operator functions, Itogi Nauki Tekh. Ser.: Sovrem. Mat. Pril. Temat. Obzory, Moscow: VINITI RAN, 2020, vol. 187, pp. 36–43.
- Glushak, A.V., The Legendre operator function, Izvestiya: Mathematics, 2001, vol. 65, no. 6, pp. 1073–1083.
- Glushak, A.V., Uniquely solvable problems for abstract Legendre equation, Russ. Math., 2018, vol. 62, no. 7, pp. 1–12.
- Glushak, A.V. A family of singular differential equations / A.V. Glushak // Lobachevskii J. Math. — 2020. — V. 41, № 5. — P. 763-771.
- Glushak, A.V., The associated operator Legendre function and the incomplete Cauchy problem, Russ. Math., 2022, vol. 66, no. 9, pp. 1–10.
- Fattorini, H.O. The undetermined Cauchy problem in Banach spaces / H.O. Fattorini // Math. Ann. — 1973. — V. 200, № 5. — P. 103-112.
- De Laubenfels, R. Existence Families, Functional Calculi and Evolution Equations / R. De Laubenfels. — Springer-Verlag, 1994. — 244 p.
- Glushak, A.V., Macdonald operator function and the incomplete Cauchy problem for the Euler–Poisson–Darboux equation, Itogi Nauki Tekh. Ser. Sovrem. Mat. Pril. Temat. Obzory, 2021, vol. 195, pp. 35–43.
- Katrakhov, V.V. and Sitnik, S.M., The transmutation method and boundary-value problems for singular elliptic equations, Contemporary Mathematics. Fundamental Directions, 2018, vol. 64, no. 2, pp. 211–426.
- Samko, S.G., Kilbas, A.A., and Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications, Boca Raton: CRC Press, 1993.
- Goldstein, J.A., Semigroups of Linear Operators and Applications, New York: Oxford Univ. Press, 1985.
- Vasil’ev, V.V., Krein, S.G., and Piskarev, S.I., Semigroups of operators, cosine operator functions, and linear differential equations, J. Sov. Math., 1991, vol. 54, no. 4, pp. 1042–1129.
- Prudnikov, A.P., Brychkov, Yu.A., and Marichev, O.I., Integrals and Series: More Special Functions, New York: Gordon and Breach Science Publishers, 1990.
- Carrol, R.W. Transmutation, Scattering Theory and Special Functions / R.W. Carrol. — North Holland, 1982. — 457 p.
- Prudnikov, A.P., Brychkov, Yu.A., and Marichev, O.I., Integrals and Series. Elementary Functions, New York etc.: Gordon and Breach Science Publishers, 1986.
- Trimeche, K. Transformation integrale de Weyl et theoreme de Paley-Wiener associes a un operateur differentiel singulier sur (0, то) / K. Trimeche //J. Math. pur et Appl. — 1981. — V. 60. — P. 51-98.
- Virchenko, N. Generalized Associated Legendre Functions and their Applications / N. Virchenko, I. Fedotova. — Singapore ; New Jersey ; London ; Hong Kong : World Scientific, 2001. — 196 p.
Supplementary files
