INITIAL PROBLEM FOR A THIRD ORDER NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS OF CONVOLUTION TYPE
- Autores: Askhabov S.N.1,2,3
-
Afiliações:
- Kadyrov Chechen State University
- Chechen State Pedagogical University
- Moscow Institute of Physics and Technology
- Edição: Volume 60, Nº 4 (2024)
- Páginas: 521-532
- Seção: Articles
- URL: https://ogarev-online.ru/0374-0641/article/view/257627
- DOI: https://doi.org/10.31857/S0374064124040075
- EDN: https://elibrary.ru/PAYTDQ
- ID: 257627
Citar
Resumo
Palavras-chave
Sobre autores
S. Askhabov
Kadyrov Chechen State University; Chechen State Pedagogical University; Moscow Institute of Physics and Technology
Email: askhabov@yandex.ru
Grozny, Russia; Grozny, Russia; Dolgoprudny, Russia
Bibliografia
- Okrasinski, W. Nonlinear Volterra equations and physical applications / W. Okrasinski // Extracta Math. — 1989. — V. 4, № 2. — P. 51–74.
- Askhabov S.N. Nonlinear convolution type equations / S.N. Askhabov, M.A. Betilgiriev // Semin. Anal., Oper. Equat. Numer. Anal. 1989/90. — Berlin : Karl-Weierstrass-Institut fu¨r Mathematik, 1990. — P. 1–30.
- Brunner, H. Volterra integral equations: an introduction to the theory and applications / H. Brunner. — Cambridge : Cambridge Univ. Press, 2017. — 402 p.
- Асхабов, С.Н. Интегро-дифференциальное уравнение типа свертки со степенной нелинейностью и неоднородностью в линейной части / С.Н. Асхабов // Дифференц. уравнения. — 2020. — Т. 56, № 6. — С. 786–795.
- Askhabov, S.N. On a second-order integro-differential equation with difference kernels and power nonlinearity / S.N. Askhabov // Bulletin of the Karaganda University. Math. Series. — 2022. — № 2 (106). — P. 38–48.
- Эдвардс, Р. Функциональный анализ: теория и приложения / Р. Эдвардс ; пер. с англ. Г.Х. Бермана, И.Б. Раскиной ; под ред. В.Я. Лина. — М. : Мир, 1969. — 1071 с.
- Okrasinski, W., Nonlinear Volterra equations and physical applications, Extracta Math., 1989, vol. 4, no. 2, pp. 51– 74.
- Askhabov, S.N. and Betilgiriev, M.A., Nonlinear convolution type equations, Semin. Anal., Oper. Equat. Numer. Anal., 1989/90, Berlin: Karl–Weierstrass–Institut fu¨r Mathematik, 1990, pp. 1–30.
- Brunner, H., Volterra Integral Equations: an Introduction to the Theory and Applications, Cambridge: Cambridge University Press, 2017.
- Askhabov, S.N., Integro-differential equation of the convolution type with a power nonlinearity and an inhomogeneity in the linear part, Differ. Equat., 2020, vol. 56, no. 6, pp. 775–784.
- Askhabov, S.N., On a second-order integro-differential equation with difference kernels and power nonlinearity, Bulletin of the Karaganda University. Math. Series, 2022, no. 2 (106), pp. 38–48.
- Edwards, R.E., Functional Analysis: Theory and Applications, New York: Holt, Rinehart, and Winston, 1965.
Arquivos suplementares
