Ob approksimatsii poverkhnostnykh proizvodnykh funktsiy s primeneniem integral'nykh operatorov

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Integral formulas are presented for approximating the surface gradient (of a scalar function given on a surface) and divergence (of a tangent vector field given on a surface) that are analogs of the well-known formulas for the derivatives of a function on a plane. Estimates of the error in the approximation of these functions are obtained. The question of subsequent approximation of the integrals that give expression for the surface gradient and divergence by quadrature sums over the values of the function under study at the nodes selected on the cells of the unstructured grid approximating the surface is also considered.

About the authors

A. V Setukha

Lomonosov Moscow State University; Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences

Author for correspondence.
Email: setuhaav@rambler.ru
Moscow, 119991, Russia; Moscow, 119333, Russia

References

  1. Колтон Д., Кресс Р. Методы интегральных уравнений в теории рассеяния. М., 1987.
  2. Лифанов И.К. Метод сингулярных интегральных уравнений и численный эксперимент. М., 1995.
  3. Volakis J.L., Sertel K. Integral Equation Methods for Electromagnetics. Raleigh, 2012.
  4. Писарев И.В., Сетуха А.В. Снесение граничного условия на срединную поверхность при численном решении краевой задачи линейной теории крыла // Вычислит. методы и программирование. 2014. Т. 15. Вып. 1. С. 109-120.
  5. Setukha A., Fetisov S. The method of relocation of boundary condition for the problem of electromagnetic wave scattering by perfectly conducting thin objects // J. of Comput. Phys. 2018. V. 373. P. 631-647.
  6. Гутников В.А., Лифанов И.К., Сетуха А.В. О моделировании зданий и сооружений методом дискретных вихревых рамок // Изв. РАН. Механика жидкости и газа. 2006. № 4. C. 78-92.
  7. Eldredge J.D., Leonard A., Colonius T. A general deterministic treatment of derivatives in particle methods // J. of Comput. Phys. 2002. V. 180. P. 686-709.
  8. Зорич В.А. Математический анализ. Ч. 1. М., 1997.
  9. Захаров Е.В., Рыжаков Г.В., Сетуха А.В. Численное решение трёхмерных задач дифракции электромагнитных волн на системе идеальнопроводящих поверхностей методом гиперсингулярных интегральных уравнений // Дифференц. уравнения. 2014. Т. 50. № 9. С. 1253-1263.
  10. Рыжаков Г.В., Сетуха А.В. О сходимости численной схемы типа метода вихревых рамок на замкнутой поверхности с аппроксимацией формы поверхности // Дифференц. уравнения. 2012. Т. 48. № 9. С. 1327-1336.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».