Approksimatsiya resheniya obratnoy zadachi dlya singulyarno vozmushchennoy sistemy uravneniy v chastnykh proizvodnykh

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We consider an initial–boundary value problem for a singularly perturbed system of partial differential equations. We pose an inverse problem of determining an unknown initial condition based on additional information about the solution of the initial–boundary value problem. It is proved that using the expansion of the solution of the initial–boundary value problem in the small parameter 
, one can obtain solutions approximating the solution of the inverse problem with order O(e)or O(e).

About the authors

A. M Denisov

Lomonosov Moscow State University

Author for correspondence.
Email: den@cs.msu.ru
Moscow, 119991, Russia

References

  1. Тихонов А.Н., Самарский А.А. Уравнения математической физики. М., 1999.
  2. Денисов А.М., Лукшин А.В. Математические модели однокомпонентной динамики сорбции. М., 1989.
  3. Денисов А.М. Приближенное решение обратных задач для уравнения теплопроводности с сингулярным возмущением // Журн. вычислит. математики и мат. физики. 2021. Т. 61. № 12. С. 2040-2049.
  4. Денисов А.М. Приближенное решение обратной задачи для интегродифференциального уравнения теплопроводности с сингулярным возмущением // Журн. вычислит. математики и мат. физики. 2023. Т. 63. № 5. С. 795-802.
  5. Латтес Р., Лионс Ж.-Л. Метод квазиобращения и его приложения. М., 1970.
  6. Иванов В.К. Задача квазиобращения для уравнения теплопроводности в равномерной метрике // Дифференц. уравнения. 1972. Т. 8. № 4. С. 652-658.
  7. Самарский А.А., Вабищевич П.Н. Численные методы решения обратных задач математической физики. М., 2004.
  8. Короткий А.И., Цепелев И.А., Исмаил-заде А.Е. Численное моделирование обратных ретроспективных задач тепловой конвекции с приложениями к задачам геодинамики // Изв. Уральского ун-та. 2008. № 58. С. 78-87.
  9. Табаринцева Е.В., Менихес Л.Д., Дрозин А.Д. О решении граничной обратной задачи методом квазиобращения // Вестн. Южно-Уральского гос. ун-та. Сер. Математика. Механика. Физика. 2012. Вып. 6. С. 8-13.
  10. Денисов А.М. Асимптотика решений обратных задач для гиперболических уравнений с малым параметром при старшей производной // Журн. вычислит. математики и мат. физики. 2013. Т. 53. № 5. С. 744-752.
  11. Belov Yu.Ya., Kopylova V.G. Determination of source function in composite type system of equations // Журн. Сибирского федерал. ун-та. Сер. Математика и физика. 2014. Т. 7. Вып. 3. С. 275-288.
  12. Денисов А.М., Соловьева С.И. Численное решение обратных задач для гиперболического уравнения с малым параметром при старшей производной // Дифференц. уравнения. 2018. Т. 54. № 7. С. 919-928.
  13. Lukyanenko D.V., Shishlenin M.A., Volkov V.T. Asymptotic analysis of solving an inverse boundary value problem for a nonlinear singularly perturbed time-periodic reaction-diffusion-advection equation // J. Inverse and Ill-Posed Problems. 2019. V. 27. № 5. P. 745-758.
  14. Lukyanenko D.V., Borzunov A.A., Shishlenin M.A. Solving coefficient inverse problems for a nonlinear singularly perturbed equations of the reaction-diffusion-advection type with data on the position of reaction front // Comm. in Nonlin. Sci. Numer. Simulation. 2021. V. 99. P. 105824.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».