К задаче Дарбу для гиперболических систем

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Для гиперболической системы с некратными характеристиками в $n $-мерном пространстве независимых переменных доказаны существование и единственность решения задачи Дарбу. Определена матрица Римана--Адамара и построено решение задачи Дарбу в терминах указанной матрицы. В качестве примера применения полученных результатов подробно построено решение задачи Дарбу для системы в случае четырёх независимых переменных.

Об авторах

А. Н Миронов

Самарский государственный технический университет; Елабужский институт (филиал) Казанского (Приволжского) федерального университета

Email: miro73@mail.ru
Самара, Россия;Елабуга, Россия

Л. Б Миронова

Елабужский институт (филиал) Казанского (Приволжского) федерального университета

Автор, ответственный за переписку.
Email: lbmironova@yandex.ru
Елабуга, Россия

Список литературы

  1. Бицадзе А.В. Некоторые классы уравнений в частных производных. М., 1981.
  2. Моисеев Е.И. Уравнения смешанного типа со спектральным параметром. М., 1988.
  3. Сабитов К.Б., Шарафутдинова Г.Г. Задачи Коши-Гурса для вырождающегося гиперболического уравнения // Изв. вузов. Математика. 2003. № 5. С. 21-29.
  4. Джохадзе О.М., Харибегашвили С.С. Некоторые свойства функций Римана и Римана-Адамара для линейных гиперболических уравнений второго порядка и их приложения // Дифференц. уравнения. 2011. Т. 47. № 4. С. 477-492.
  5. Миронов А.Н. Задача Дарбу для уравнения Бианки третьего порядка // Мат. заметки. 2017. Т. 102. Вып. 1. С. 64-71.
  6. Миронов А.Н. Задача Дарбу для уравнения Бианки четвёртого порядка // Дифференц. уравнения. 2021. Т. 57. № 3. С. 349-363.
  7. Бицадзе А.В. О структурных свойствах решений гиперболических систем уравнений с частными производными // Мат. моделирование. 1994. Т. 6. № 6. С. 22-31.
  8. Чекмарев Т.В. Формулы решения задачи Гурса для одной линейной системы уравнений с частными производными // Дифференц. уравнения. 1982. Т. 18. № 9. С. 1614-1622.
  9. Mironova L.B. Boundary-value problems with data on characteristics for hyperbolic systems of equations // Lobachevskii J. of Math. 2020. V. 41. № 3. P. 400-406.
  10. Миронов А.Н., Миронова Л.Б. Метод Римана-Адамара для одной системы в трёхмерном пространстве // Дифференц. уравнения. 2021. Т. 57. № 8. С. 1063-1070.
  11. Миронова Л.Б. О методе Римана в $\\mathbbR^n$ для одной системы с кратными характеристиками // Изв. вузов. Математика. 2006. № 1. С. 34-39.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».