Traveling Wave Method

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A survey of the development of the traveling wave method for one-dimensional media is presented. The main results and changes in the statement of the problem of representing solutions of linear systems of partial differential equations in terms of “traveling waves” (more precisely, in terms of a system of wave transport equations) are presented. It is shown that as the study of systems becomes more complicated, the problem of representing the solution by the traveling wave method turns out to be applicable not only for hyperbolic systems but also for systems containing (even implicitly) both parabolic and elliptic components and thereby approaches the general problem of decomposition of an arbitrary system of linear equations into a system of first-order equations with a main part of the canonical type and with a subordinate linear part.

About the authors

A. V Borovskikh

Lomonosov Moscow State University, Moscow, 119991, Russia; Scientific-Educational Mathematical Center, Khetagurov North Ossetian State University, Vladikavkaz, 362025, Russia

Author for correspondence.
Email: bor.bor@mail.ru

References

  1. Боровских А.В. Распространение волн в одномерной неоднородной среде // Деп. в ВИНИТИ 13.12.00. № 3134-В00.
  2. Боровских А.В. Формула распространяющихся волн для одномерной неоднородной среды // Дифференц. уравнения. 2002. Т. 38. № 6. С. 758-767.
  3. Боровских А.В. Метод распространяющихся волн для одномерной неоднородной среды // Тр. семинара им. И.Г. Петровского. 2004. Т. 24. С. 3-43.
  4. Ильин В.А. Граничное управление процессом колебаний на двух концах в терминах обобщённого решения волнового уравнения с конечной энергией // Дифференц. уравнения. 2000. Т. 36. № 11. С. 1513-1528.
  5. Ильин В.А. Граничное управление сферически симметричными колебаниями трёхмерного шара // Тр. Мат. ин-та им. В.А. Стеклова. 2001. Т. 232. С. 144-155.
  6. Тихомиров В.В. Волновое уравнение с граничным управлением при упругом закреплении. I // Дифференц. уравнения. 2002. Т. 38. № 3. С. 393-403.
  7. Тихомиров В.В. Волновое уравнение с граничным управлением при упругом закреплении. II // Дифференц. уравнения. 2002. Т. 38. № 4. С. 529-537.
  8. Ильин В.А., Моисеев Е.И. Граничное управление радиально-симметричными колебаниями круглой мембраны // Докл. РАН. 2003. Т. 393. № 6. С. 730-734.
  9. Ильин В.А., Моисеев Е.И. Граничное управление на двух концах процессом, описываемым телеграфным уравнением // Докл. РАН. 2004. Т. 394. № 2. С. 154-158.
  10. Komornik V. Exact Controlability and Stabilization. Chichester; New York; Paris, 1994.
  11. Боровских А.В. Формулы граничного управления неоднородной струной. I // Дифференц. уравнения. 2007. Т. 43. № 1. С. 64-89
  12. Боровских А.В. Формулы граничного управления неоднородной струной. II // Дифференц. уравнения. 2007. Т. 43. № 5. P. 656-666.
  13. Боровских А.В. Распространение волн в неоднородной среде: дис.... д-ра физ.-мат. наук. М., 2006.
  14. Боровских А.В., Царицанский А.Н. Формула распространяющихся волн для среды с памятью // Дифференц. уравнения. 2012. Т. 48. № 6. С. 901-902.
  15. Царицанский А.Н. Задача о распространии волн в неоднородной среде с памятью // Мат. заметки. 2015. Вып. 98. № 3. С. 436-447.
  16. Царицанский А.Н. Дискретный и непрерывный случаи в задаче о распространении волн в среде с памятью // Вестн. Самарского гос. техн. ун-та. Сер. Физ.-мат. науки. 2015. Т. 19. № 3. C. 489-503.
  17. Соболев С.Л. Функционально-инвариантные решения уравнения 2-го порядка с двумя независимыми переменными // Тр. Физ.-мат. ин-та им. В.А. Стеклова. 1934. Т. 5. С. 259-264.
  18. Friedlander F.G. Simple progressive solutions of the wave equation // Math. Proc. of the Cambridge Philos. Soc. 1947. V. 43. № 3. P. 360-373.
  19. Еругин Н.П., Смирнов М.М. Функционально-инвариантные решения дифференциальных уравнений // Дифференц. уравнения. 1981. Т. 17. № 5. С. 853-865.
  20. Никольский Э.В. Обобщенные функционально-инвариантные решения и эквивалентные системы уравнений математической физики. Новосибирск, 1997.
  21. Киселев А.П. Относительно неискажающиеся волны. Новые примеры // Зап. науч. семинаров ЛОМИ. 2001. Т. 275. С. 100-103.
  22. Киселев А.П., Перель М.В. Относительно неискажающиеся волны для $m $-мерного волнового уравнения // Дифференц. уравнения. 2002. Т. 38. № 8. С. 1128-1129.
  23. Ali-Mehmeti F. Nonlinear waves in networks // Math. Research. V. 80. Berlin, 1994.
  24. Покорный Ю.В., Пенкин О.М., Боровских А.В., Прядиев В.Л., Лазарев К.П., Шабров С.А. Дифференциальные уравнения на геометрических графах. М., 2004.
  25. Покорный Ю.В., Прядиев В.Л. Некоторые вопросы качественной теории Штурма-Лиувилля на пространственной сети // Успехи мат. наук. 2004. Т. 59. № 3. С. 115-150.
  26. Покорный Ю.В., Прядиев В.Л., Боровских А.В. Волновое уравнение на пространственной сети // Докл. РАН. 2003. Т. 388. № 1. С. 16-18.
  27. Belishev M.I., Wada N. A $C^* $-algebra associated with dynamics on a graph of strings // J. Math. Soc. Japan. 2015. V. 67. № 3. P. 1239-1274.
  28. Белишев М.И., Каплун А.В. Канонические формы алгебры эйконалов метрического графа и его геометрия // Зап. науч. семинаров ПОМИ. 2022. Т. 519. С. 35-66.
  29. Баранов В., Кюнец Ж. Синтетические сейсмограммы с многократными отражениями // Проблемы сейсмической разведки. М., 1962. С. 179-188.
  30. Благовещенский А.С. О локальном методе решения нестационарной обратной задачи для неоднородной струны // Тр. Мат. ин-та им. В.А. Стеклова. 1971. Т. 115. С. 28-38.
  31. Белишев М.И. О нарушении условия разрешимости обратной задачи для неоднородной струны // Функц. анализ и его прил. 1975. Т. 9. Вып. 4. С. 57-58.
  32. Авдонин С.А., Белишев М.И., Иванов С.А. Граничное управление и матричная обратная задача для уравнения $u_tt-u_xx+V(x)u=0$ // Мат. сб. 1991. Т. 182. № 3. С. 307-331.
  33. Чернятин В.А. Обоснование метода Фурье в смешанной задаче для уравнений в частных производных. М., 1991.
  34. Friedlander F.G. On the integrals of a partial differential equation // Proc. Cambr. Philos. Soc. 1947. V. 43. № 3. P. 348-359.
  35. Моисеев Е.И., Тихомиров В.В., Козлов Е.А. Формула среднего значения для регулярного решения гиперболического уравнения // Дифференц. уравнения. 1983. Т. 19. № 10. С. 1802-1803.
  36. Боровских А.В. Выражение функции Римана для волнового уравнения в неоднородной среде через коэффициенты переноса // Дифференц. уравнения. 2005. Т. 41. № 6. С. 851.
  37. Fattorini H.O. Second-Order Linear Differential Equations in Banach Spaces. Amsterdam, 1985.
  38. Аниконов Ю.Е., Пестов Л.Н. Формулы в линейных и нелинейных задачах томографии. Новосибирск, 1990.
  39. Нижник Л.П. Обратные задачи рассеяния для гиперболических уравнений. Киев, 1991.
  40. Имомназаров Х.Х. Численное моделирование некоторых задач теории фильтрации для пористых сред // Сиб. журн. индустр. математики. 2001. Т. 4. № 2. С. 154-165.
  41. Гавриков А.А., Шамаев А.С. Некоторые вопросы акустики эмульсий // Тр. семинара им. И.Г. Петровского. 2011. Т. 28. С. 114-146.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».