Solution Uniqueness Criteria in a Time-Nonlocal Problem for the Operator Differential Equation l(.)-A with the Tricomi Operator A

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study the uniqueness of the solution of a time-regular problem for the operator-differential equation  with the Tricomi operator. The order of the differential expression  is considered to be an arbitrary positive integer, and the regular boundary conditions are given with respect to the time variable. The operator  is generated by the Tricomi equation. The boundary conditions for the Tricomi operator are given by the Dirichlet condition on the elliptic part and by the fractional derivative traces of the solution along the characteristics. It is indicated that this operator is a self-adjoint operator in the space. The self-adjointness of the operator guarantees the existence of a complete system of eigenfunctions orthonormal in if is a domain bounded by a Lyapunov curve and by characteristics of the wave equation.

作者简介

B. Kanguzhin

Al-Farabi Kazakh National University, Almaty, 050040, Kazakhstan; Institute of Mathematics and Mathematical Modeling, Ministry of Education and Science of the Republic of Kazakhstan, Almaty, 050010, Kazakhstan

Email: kanguzhin53@gmail.com

B. Koshanov

Al-Farabi Kazakh National University, Almaty, 050040, Kazakhstan; International University of Information Technology, Almaty, 050040, Kazakhstan

编辑信件的主要联系方式.
Email: koshanov@list.ru

参考

  1. Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and Applications of Fractional Differential Equations. Amsterdam; London; New York, 2006.
  2. Фридман А. Уравнения с частными производными параболического типа. М., 1968.
  3. Миранда К. Уравнения с частными производными эллиптического типа. М., 1957.
  4. Бицадзе А.В. Уравнения смешанного типа. М., 1959.
  5. Ильин В.А. О разрешимости смешанных задач для гиперболического и параболического уравнений // Успехи мат. наук. 1960. Т. 15. № 2. С. 97-154.
  6. Тихонов И.В. Теоремы единственности в линейных нелокальных задачах для абстрактных дифференциальных уравнений // Изв. РАН. Сер. Математика. 2003. Т. 67. № 2. C. 133-166.
  7. Попов А.Ю., Тихонов И.В. Классы единственности в нелокальной по времени задаче для уравнения теплопроводности и комплексные собственные функции оператора Лапласа // Дифференц. уравнения. 2004. Т. 40. № 3. C. 396-405.
  8. Дезин А.А. Дифференциально-операторные уравнения. Метод модельных операторов в теории граничных задач // Тр. Мат. ин-та им. В.А. Стеклова. 2000. Т. 229. № 3. С. 3-175.
  9. Grisvard P. Equations operaationnelles abstraites et problemes aux limites // Ann. Scuola Norm. Super. Pisa, 1967. V. 21. № 3. P. 308-347.
  10. Дубинский Ю.А. Об одной абстрактной теореме и её приложениях к краевым задачам для неклассических уравнений // Мат. сб. 1969. Т. 79 (121). № 1. С. 91-117.
  11. Романко В.К. Граничные задачи для одного класса дифференциальных операторов // Дифференц. уравнения. 1974. Т. 10. № 1. С. 117-131.
  12. Кожанов А.И., Пинигина Н.Р. Краевые задачи для неклассических дифференциальных уравнений высокого порядка // Мат. Заметки. 2017. Т. 101. Вып. 3. С. 403-412.
  13. Орынбасаров М.О. О разрешимости краевых задач для параболического и полипараболического уравнений в нецилиндрической области с негладкими боковыми границами // Дифференц. уравнения. 1994. Т. 30. № 1. C. 151-161.
  14. Шелухин В.В. Задача со средними по времени данными для нелинейных параболических уравнений // Сибирский мат. журн. 1991. Т. 32. № 2. C. 154-165.
  15. Шелухин В.В. Задача о прогнозе температуры океана по средним данным за предшествующий период времени // Докл. РАН. 1992. Т. 324. № 4. C. 760-764.
  16. Кесельман Г.М. О безусловной сходимости разложений по собственным функциям некоторых дифференциальных операторов // Изв. вузов. Математика. 1964. № 2. C. 82-93.
  17. Наймарк М.А. Линейные дифференциальные операторы. М., 1969.
  18. Кальменов Т.Ш. О самосопряжённых краевых задачах для уравнения Трикоми // Дифференц. уравнения. 1983. Т. 19. № 1. C. 66-75.
  19. Зорич В.А. Математический анализ. Ч. 2. М., 1984.
  20. Евграфов М.А. Асимптотические оценки и целые функции. М., 1979.
  21. Agmon S. On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems // Comm. Pure and Appl. Math. 1962. V. 15. № 2. P. 119-143.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».