Optimal Feedback in a Linear–Quadratic Optimal Control Problem for a Fractional-Order System

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For a dynamical system described by a linear differential equation with a Caputo fractional derivative, we consider an optimal control problem of minimizing a quadratic terminal–integral performance functional. We propose and justify the construction of optimal feedback (optimal control synthesis) that generates the corresponding optimal control for any initial state of the system.

About the authors

M. I Gomoyunov

Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620108, Russia; Udmurt State University, Izhevsk, 426034, Russia

Email: m.i.gomoyunov@gmail.com
Екатеринбург, Россия; Ижевск, Россия

N. Yu Lukoyanov

Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620108, Russia

Author for correspondence.
Email: nyul@imm.uran.ru
Екатеринбург, Россия

References

  1. Самко С.Г., Килбас А.А., Маричев О.И. Интегралы и производные дробного порядка и некоторые их приложения. Минск, 1987.
  2. Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and Applications of Fractional Differential Equations. Amsterdam, 2006.
  3. Diethelm K. The Analysis of Fractional Differential Equations: an Application-Oriented Exposition Using Differential Operators of Caputo Type. Berlin, 2010.
  4. Бутковский А.Г., Постнов С.С., Постнова Е.А. Дробное интегро-дифференциальное исчисление и его приложения в теории управления. I. Математические основы и проблема интерпретации // Автоматика и телемеханика. 2013. № 4. С. 3-42.
  5. Бутковский А.Г., Постнов С.С., Постнова Е.А. Дробное интегро-дифференциальное исчисление и его приложения в теории управления. II. Дробные динамические системы: моделирование и аппаратная реализация // Автоматика и телемеханика. 2013. № 5. С. 3-34.
  6. Sun H., Zhang Y., Baleanu D., Chen W., Chen Y. A new collection of real world applications of fractional calculus in science and engineering // Commun. Nonlin. Sci. Numer. Simul. 2018. V. 64. P. 213-231.
  7. Tarasov V.E. On history of mathematical economics: application of fractional calculus // Mathematics. 2019. V. 7. № 6. Art. 509.
  8. Agrawal O.P. A quadratic numerical scheme for fractional optimal control problems // J. Dyn. Syst. Meas. Contr. 2008. V. 130. № 1. Art. 011010.
  9. Li Y., Chen Y. Fractional order linear quadratic regulator // Proc. of the 2008 IEEE/ASME Intern. Conf. on Mechatronic and Embedded Systems and Applications. Beijing, 2008. P. 363-368.
  10. Liang S., Wang S.-G., Wang Y. Representation and LQR of exact fractional order systems // Proc. of the 53rd IEEE Conf. on Decision and Control. Los Angeles, 2014. P. 6908-6913.
  11. Bhrawy A.H., Doha E.H., Machado J.A.T., Ezz-Eldien S.S. An efficient numerical scheme for solving multi-dimensional fractional optimal control problems with a quadratic performance index // Asian J. Control. 2015. V. 17. № 6. P. 2389-2402.
  12. Idczak D., Walczak S. On a linear-quadratic problem with Caputo derivative // Opuscula Math. 2016. V. 36. № 1. P. 49-68.
  13. Baghani O. Solving state feedback control of fractional linear quadratic regulator systems using triangular functions // Commun. Nonlin. Sci. Numer. Simulat. 2019. V. 73. P. 319-337.
  14. Zhou B., Speyer J.L. Fractional linear quadratic regulators using Wiener-Hopf spectral factorization // SIAM J. Control Optim. 2019. V. 57. № 6. P. 4011-4032.
  15. Dabiri A., Chahrogh L.K., Machado J.A.T. Closed-form solution for the finite-horizon linear-quadratic control problem of linear fractional-order systems // Proc. American Control Conf. New Orleans, 2021. P. 3864-3869.
  16. Han S., Lin P., Yong J. Causal state feedback representation for linear quadratic optimal control problems of singular Volterra integral equations // Math. Control Relat. Fields. 2023. V. 13. № 4. P. 1282-1317.
  17. Malmir I. Novel closed-loop controllers for fractional linear quadratic time-varying systems // Numer. Algebra, Control. Optim. 2022. doi: 10.3934/naco.2022032.
  18. Gomoyunov M.I. Value functional and optimal feedback control in linear-quadratic optimal control problem for fractional-order system // Math. Control Relat. Fields. 2023. doi: 10.3934/mcrf.2023002.
  19. Gomoyunov M.I. Dynamic programming principle and Hamilton-Jacobi-Bellman equations for fractional-order systems // SIAM J. Control Optim. 2020. V. 58. № 6. P. 3185-3211.
  20. Bourdin L. Weighted H"older continuity of Riemann-Liouville fractional integrals - application to regularity of solutions to fractional Cauchy problems with Carath'eodory dynamics // Fract. Calc. Appl. Anal. 2019. V. 22. № 3. P. 722-749.
  21. Idczak D., Kamocki R. On the existence and uniqueness and formula for the solution of R-L fractional Cauchy problem in $mathbb{R}n$ // Fract. Calc. Appl. Anal. 2011. V. 14. № 4. P. 538-553.
  22. Обуховский В.В., Кулманакова М.М., Боровикова М.М. Задача разрешимости для управляемой системы с дробной производной и каузальным оператором // Таврический вестн. информатики и математики. 2021. № 4. С. 85-105.
  23. Gomoyunov M.I. Approximation of fractional order conflict-controlled systems // Progr. Fract. Differ. Appl. 2019. V. 5. № 2. P. 143-155.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».