Solution of a Singularly Perturbed Mixed Problem on the Half-Line for a Parabolic Equation with a Strong Turning Point of the Limit Operator

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We study singularly perturbed problems in the presence of spectral singularities of the limit operator using S.A. Lomov’s regularization method. In particular, a regularized asymptotic solution is constructed for a singularly perturbed inhomogeneous mixed problem on the half-line for a parabolic equation with a strong turning point of the limit operator. Based on the idea of asymptotic integration of problems with unstable spectrum, it is shown how regularizing functions and additional regularizing operators should be introduced, the formalism of the regularization method for this type of singularity is described in detail, this algorithm is justified, and an asymptotic solution of any order in a small parameter is constructed.

About the authors

A. G Eliseev

National Research University “Moscow Power Engineering Institute”, Moscow, 111250, Russia

Email: predikat@bk.ru
Москва, Россия

T. A Ratnikova

National Research University “Moscow Power Engineering Institute”, Moscow, 111250, Russia

Email: ratnikovata@mpei.ru
Москва, Россия

D. A Shaposhnikova

National Research University “Moscow Power Engineering Institute”, Moscow, 111250, Russia

Author for correspondence.
Email: shaposhnikovda@mpei.ru
Москва, Россия

References

  1. Ломов С.А. Введение в общую теорию сингулярных возмущений. М., 1981.
  2. Ломов С.А., Ломов И.С. Основы математической теории пограничного слоя. М., 2011.
  3. Eliseev A.G., Lomov S.A. Asymptotic integration of singularly perturbed problems // London Math. Soc. Russ. Math. Surveys. 1988. V. 43. P. 1-63.
  4. Yeliseev A., Ratnikova T., Shaposhnikova D. Regularized asymptotics of the solution of the singularly perturbed first boundary value problem on the semiaxis for a parabolic equation with a rational "simple" turning point // Mathematics. 2021. № 9. Art. 405.
  5. Елисеев А.Г., Кириченко П.В. Сингулярно возмущённая задача Коши при наличии "слабой" точки поворота первого порядка у предельного оператора с кратным спектром // Дифференц. уравнения. 2022. Т. 58. № 6. С. 733-746.
  6. Елисеев А.Г. Пример решения сингулярно возмущённой задачи Коши для параболического уравнения при наличии "сильной" точки поворота // Дифференц. уравнения и процессы управления. 2022. № 3. С. 46-59.
  7. Арнольд В.И. О матрицах, зависящих от параметров // Успехи мат. наук. 1971. Т. 26. Вып. 2 (158). С. 101-114.
  8. Mehler F.G. Ueber die Entwicklung einer Function von beliebig vielen Variablen nach Laplaceschen Functionen honerer Ordnung // J. fur die Reine und Angewandte Mathematik. 1866. S. 161-176.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».