Геодезически эквивалентные метрики и геометрия Нийенхейса

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Цель работы – продемонстрировать, как понятия, методы и результаты из геометрии Нийенхейса могут быть использованы для изучения геодезически эквивалентных метрик. Мы предлагаем новый способ изложения и доказательства многих фактов классической теории геодезически эквивалентных метрик, а также разрабатываем методы для ее дальнейшего развития.Библиография: 33 названия.

Об авторах

Алексей Викторович Болсинов

Department of Mathematical Sciences, Loughborough University, Loughborough, UK; Институт математики и математического моделирования, г. Алматы, Казахстан

Автор, ответственный за переписку.
Email: A.Bolsinov@lboro.ac.uk
доктор физико-математических наук, профессор

Список литературы

  1. Г. В. Белозеров, “Геодезический поток на пересечении нескольких софокусных квадрик в $mathbb{R}^n$”, Матем. сб., 214:7 (2023), 3–26
  2. E. Beltrami, “Risoluzione del problema: riportare i punti di una superficie sopra un piano in modo che le linee geodetiche vengano rappresentate da linee rette”, Ann. Mat. Pura Appl. (2), 1865, no. 7, 185–204
  3. A. V. Bolsinov, A. Yu. Konyaev, V. S. Matveev, “Applications of Nijenhuis geometry V: geodesic equivalence and finite-dimensional reductions of integrable quasilinear systems”, J. Nonlinear Sci., 34:2 (2024), 33, 18 pp.
  4. A. V. Bolsinov, A. Yu. Konyaev, V. S. Matveev, “Nijenhuis geometry”, Adv. Math., 394 (2022), 108001, 52 pp.
  5. A. V. Bolsinov, A. Yu. Konyaev, V. S. Matveev, “Nijenhuis geometry III: $mathrm{gl}$-regular Nijenhuis operators”, Rev. Mat. Iberoam., 40:1 (2024), 155–188
  6. A. V. Bolsinov, A. Yu. Konyaev, V. S. Matveev, “Nijenhuis geometry IV: conservation laws, symmetries and integration of certain non-diagonalisable systems of hydrodynamic type in quadratures”, Nonlinearity, 37:10 (2024), 105003, 27 pp.
  7. A. V. Bolsinov, V. S. Matveev, “Geometrical interpretation of Benenti systems”, J. Geom. Phys., 44:4 (2003), 489–506
  8. A. V. Bolsinov, V. S. Matveev, “Local normal forms for geodesically equivalent pseudo-Riemannian metrics”, Trans. Amer. Math. Soc., 367:9 (2015), 6719–6749
  9. A. V. Bolsinov, V. S. Matveev, “Splitting and gluing lemmas for geodesically equivalent pseudo-Riemannian metrics”, Trans. Amer. Math. Soc., 363:8 (2011), 4081–4107
  10. А. В. Болсинов, В. С. Матвеев, А. Т. Фоменко, “Двумерные римановы метрики с интегрируемым геодезическим потоком. Локальная и глобальная геометрия”, Матем. сб., 189:10 (1998), 5–32
  11. A. V. Bolsinov, V. S. Matveev, G. Pucacco, “Normal forms for pseudo-Riemannian 2-dimensional metrics whose geodesic flows admit integrals quadratic in momenta”, J. Geom. Phys., 59:7 (2009), 1048–1062
  12. C. Boubel, “On the algebra of parallel endomorphisms of a pseudo-Riemannian metric”, J. Differential Geom., 99:1 (2015), 77–123
  13. G. Darboux, Leçons sur la theorie generale des surfaces, v. III, Gauthier-Villars et Fils, Paris, 1894
  14. U. Dini, “Sopra un problema che si presenta nella teoria generale delle rappresentazioni geografiche di una superficie su di un'altra”, Ann. Mat. Pura Appl. (2), 3 (1869), 269–293
  15. P. W. Doyle, “Symmetry classes of quasilinear systems in one space variable”, J. Nonlinear Math. Phys., 1:3 (1994), 225–266
  16. A. R. Gover, V. S. Matveev, “Projectively related metrics, Weyl nullity and metric projectively invariant equations”, Proc. Lond. Math. Soc. (3), 114:2 (2017), 242–292
  17. J. Haantjes, “On $X_{m}$-forming sets of eigenvectors”, Nederl. Akad. Wetensch. Proc. Ser. A, 58, Indag. Math., 17 (1955), 158–162
  18. T. Levi-Civita, “Sulle trasformazioni delle equazioni dinamiche”, Ann. Mat. Pura Appl. (2), 24 (1896), 255–300
  19. P. Lorenzoni, F. Magri, “A cohomological construction of integrable hierarchies of hydrodynamic type”, Int. Math. Res. Not., 2005:34 (2005), 2087–2100
  20. Ф. Магри, “Цепи Ленарда для классических интегрируемых систем”, ТМФ, 137:3 (2003), 424–432
  21. V. S. Matveev, “Geometric explanation of the Beltrami theorem”, Int. J. Geom. Methods Mod. Phys., 3:3 (2006), 623–629
  22. V. S. Matveev, “On projectively equivalent metrics near points of bifurcation”, Topological methods in the theory of integrable systems, Cambridge Sci. Publ., Cambridge, 2006, 215–240
  23. V. S. Matveev, P. Ĭ. Topalov, “Trajectory equivalence and corresponding integrals”, Regul. Chaotic Dyn., 3:2 (1998), 30–45
  24. A. Nijenhuis, “$X_{n-1}$-forming sets of eigenvectors”, Nederl. Akad. Wetensch. Proc. Ser. A, 54, Indag. Math., 13 (1951), 200–212
  25. П. Олвер, Приложение групп Ли к дифференциальным уравнениям, Мир, М., 1989, 639 с.
  26. М. В. Павлов, С. И. Свинолупов, Р. А. Шарипов, “Инвариантный критерий гидродинамической интегрируемости”, Функц. анализ и его прил., 30:1 (1996), 18–29
  27. F. Schur, “Ueber den Zusammenhang der Räume constanten Riemann'schen Krümmungsmaasses mit den projectiven Räumen”, Math. Ann., 27:4 (1886), 537–567
  28. Н. C. Синюков, Геодезические отображения римановых пространств, Наука, М., 1979, 256 с.
  29. S. Tabachnikov, “Projectively equivalent metrics, exact transverse line fields and the geodesic flow on the ellipsoid”, Comment. Math. Helv., 74:2 (1999), 306–321
  30. G. Thompson, “Killing tensors in spaces of constant curvature”, J. Math. Phys., 27:11 (1986), 2693–2699
  31. P. Topalov, “Families of metrics geodesically equivalent to the analogs of the Poisson sphere”, J. Math. Phys., 41:11 (2000), 7510–7520
  32. P. Topalov, “Geodesic compatibility and integrability of geodesic flows”, J. Math. Phys., 44:2 (2003), 913–929
  33. P. Topalov, V. S. Matveev, “Geodesic equivalence via integrability”, Geom. Dedicata, 96 (2003), 91–115

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Болсинов А.В., 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).