Geodesically equivalent metrics, Nijenhuis operators, geodesic flows, symmetries, conservation laws
- Autores: Bolsinov A.V.1,2
-
Afiliações:
- Department of Mathematical Sciences, Loughborough University, Loughborough, UK
- Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan
- Edição: Volume 216, Nº 5 (2025)
- Páginas: 5-32
- Seção: Articles
- URL: https://ogarev-online.ru/0368-8666/article/view/306703
- DOI: https://doi.org/10.4213/sm10220
- ID: 306703
Citar
Resumo
We show how concepts, methods and results from Nijenhuis geometry can be used to study geodesically equivalent metrics. We propose a new method of the presentation and proof of many facts in the classical theory of geodesically equivalent metrics and develop methods for the further development of this theory.
Palavras-chave
Sobre autores
Aleksei Bolsinov
Department of Mathematical Sciences, Loughborough University, Loughborough, UK; Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan
Autor responsável pela correspondência
Email: A.Bolsinov@lboro.ac.uk
Doctor of physico-mathematical sciences, Professor
Bibliografia
- Г. В. Белозеров, “Геодезический поток на пересечении нескольких софокусных квадрик в $mathbb{R}^n$”, Матем. сб., 214:7 (2023), 3–26
- E. Beltrami, “Risoluzione del problema: riportare i punti di una superficie sopra un piano in modo che le linee geodetiche vengano rappresentate da linee rette”, Ann. Mat. Pura Appl. (2), 1865, no. 7, 185–204
- A. V. Bolsinov, A. Yu. Konyaev, V. S. Matveev, “Applications of Nijenhuis geometry V: geodesic equivalence and finite-dimensional reductions of integrable quasilinear systems”, J. Nonlinear Sci., 34:2 (2024), 33, 18 pp.
- A. V. Bolsinov, A. Yu. Konyaev, V. S. Matveev, “Nijenhuis geometry”, Adv. Math., 394 (2022), 108001, 52 pp.
- A. V. Bolsinov, A. Yu. Konyaev, V. S. Matveev, “Nijenhuis geometry III: $mathrm{gl}$-regular Nijenhuis operators”, Rev. Mat. Iberoam., 40:1 (2024), 155–188
- A. V. Bolsinov, A. Yu. Konyaev, V. S. Matveev, “Nijenhuis geometry IV: conservation laws, symmetries and integration of certain non-diagonalisable systems of hydrodynamic type in quadratures”, Nonlinearity, 37:10 (2024), 105003, 27 pp.
- A. V. Bolsinov, V. S. Matveev, “Geometrical interpretation of Benenti systems”, J. Geom. Phys., 44:4 (2003), 489–506
- A. V. Bolsinov, V. S. Matveev, “Local normal forms for geodesically equivalent pseudo-Riemannian metrics”, Trans. Amer. Math. Soc., 367:9 (2015), 6719–6749
- A. V. Bolsinov, V. S. Matveev, “Splitting and gluing lemmas for geodesically equivalent pseudo-Riemannian metrics”, Trans. Amer. Math. Soc., 363:8 (2011), 4081–4107
- А. В. Болсинов, В. С. Матвеев, А. Т. Фоменко, “Двумерные римановы метрики с интегрируемым геодезическим потоком. Локальная и глобальная геометрия”, Матем. сб., 189:10 (1998), 5–32
- A. V. Bolsinov, V. S. Matveev, G. Pucacco, “Normal forms for pseudo-Riemannian 2-dimensional metrics whose geodesic flows admit integrals quadratic in momenta”, J. Geom. Phys., 59:7 (2009), 1048–1062
- C. Boubel, “On the algebra of parallel endomorphisms of a pseudo-Riemannian metric”, J. Differential Geom., 99:1 (2015), 77–123
- G. Darboux, Leçons sur la theorie generale des surfaces, v. III, Gauthier-Villars et Fils, Paris, 1894
- U. Dini, “Sopra un problema che si presenta nella teoria generale delle rappresentazioni geografiche di una superficie su di un'altra”, Ann. Mat. Pura Appl. (2), 3 (1869), 269–293
- P. W. Doyle, “Symmetry classes of quasilinear systems in one space variable”, J. Nonlinear Math. Phys., 1:3 (1994), 225–266
- A. R. Gover, V. S. Matveev, “Projectively related metrics, Weyl nullity and metric projectively invariant equations”, Proc. Lond. Math. Soc. (3), 114:2 (2017), 242–292
- J. Haantjes, “On $X_{m}$-forming sets of eigenvectors”, Nederl. Akad. Wetensch. Proc. Ser. A, 58, Indag. Math., 17 (1955), 158–162
- T. Levi-Civita, “Sulle trasformazioni delle equazioni dinamiche”, Ann. Mat. Pura Appl. (2), 24 (1896), 255–300
- P. Lorenzoni, F. Magri, “A cohomological construction of integrable hierarchies of hydrodynamic type”, Int. Math. Res. Not., 2005:34 (2005), 2087–2100
- Ф. Магри, “Цепи Ленарда для классических интегрируемых систем”, ТМФ, 137:3 (2003), 424–432
- V. S. Matveev, “Geometric explanation of the Beltrami theorem”, Int. J. Geom. Methods Mod. Phys., 3:3 (2006), 623–629
- V. S. Matveev, “On projectively equivalent metrics near points of bifurcation”, Topological methods in the theory of integrable systems, Cambridge Sci. Publ., Cambridge, 2006, 215–240
- V. S. Matveev, P. Ĭ. Topalov, “Trajectory equivalence and corresponding integrals”, Regul. Chaotic Dyn., 3:2 (1998), 30–45
- A. Nijenhuis, “$X_{n-1}$-forming sets of eigenvectors”, Nederl. Akad. Wetensch. Proc. Ser. A, 54, Indag. Math., 13 (1951), 200–212
- П. Олвер, Приложение групп Ли к дифференциальным уравнениям, Мир, М., 1989, 639 с.
- М. В. Павлов, С. И. Свинолупов, Р. А. Шарипов, “Инвариантный критерий гидродинамической интегрируемости”, Функц. анализ и его прил., 30:1 (1996), 18–29
- F. Schur, “Ueber den Zusammenhang der Räume constanten Riemann'schen Krümmungsmaasses mit den projectiven Räumen”, Math. Ann., 27:4 (1886), 537–567
- Н. C. Синюков, Геодезические отображения римановых пространств, Наука, М., 1979, 256 с.
- S. Tabachnikov, “Projectively equivalent metrics, exact transverse line fields and the geodesic flow on the ellipsoid”, Comment. Math. Helv., 74:2 (1999), 306–321
- G. Thompson, “Killing tensors in spaces of constant curvature”, J. Math. Phys., 27:11 (1986), 2693–2699
- P. Topalov, “Families of metrics geodesically equivalent to the analogs of the Poisson sphere”, J. Math. Phys., 41:11 (2000), 7510–7520
- P. Topalov, “Geodesic compatibility and integrability of geodesic flows”, J. Math. Phys., 44:2 (2003), 913–929
- P. Topalov, V. S. Matveev, “Geodesic equivalence via integrability”, Geom. Dedicata, 96 (2003), 91–115
Arquivos suplementares
