Existence of polynomial solutions of the Monge-Ampère equation of the 4th degree. Strong bending of a thin plate

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We provide necessary and sufficient conditions for the solvability of a simplest Monge-Ampère equation, assuming that both the right-hand side and the solution are polynomials of degree 4. We give a constructive method of solution of the basic system of algebraic equations corresponding to the Monge-Ampère operator under the above conditions on the prescribed polynomial. Applications to large deflections of thin plates are presented.

Sobre autores

Yuriy Aminov

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine

Autor responsável pela correspondência
Email: aminov@ilt.kharkov.ua
Doctor of physico-mathematical sciences, Professor

Bibliografia

  1. K. Jorgens, “Über die Lösungen der Differentialgleichung $rt-s^2=1$”, Math. Ann., 127 (1954), 130–134
  2. Ю. А. Аминов, “Действие оператора Монжа–Ампера на плоскости на полиномы и его неподвижные точки полиномиального вида”, Матем. сб., 210:12 (2019), 3–30
  3. Yu. Aminov, K. Arslan, B. Bayram, B. Bulca, C. Murathan, G. Öztürk, “On the solution of the Monge–Ampère equation $Z_{xx}Z_{yy}-Z_{xy}^2=f(x,y)$ with quadratic right side”, Журн. матем. физ., анал., геом., 7:3 (2011), 203–211
  4. Л. Д. Ландау, Е. М. Лившиц, Теория упругости, Теоретическая физика, 7, Наука, М., 1965, 203 с.
  5. Ю. А. Аминов, “О полиномиальных решениях уравнения Монжа–Ампера”, Матем. сб., 205:11 (2014), 3–38
  6. Н. В. Ефимов, “Дифференциальные признаки гомеоморфности некоторых отображений с применением в теории поверхностей”, Матем. сб., 76(118):4 (1968), 489–512
  7. Б. Е. Кантор, “К вопросу о нормальном образе полной поверхности отрицательной кривизны”, Матем. сб., 82(124):2(6) (1970), 220–223
  8. С. П. Гейсберг, “О свойствах нормального отображения, порождаемого уравнением $rt-s^2=-f^2(x,y)$”, Матем. сб., 82:2 (1970), 224–232
  9. Э. Гурса, Курс математического анализа, т. 3, Ч. 2, ГТТИ, М.–Л., 1936, 317 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Aminov Y.A., 2023

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).