Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 212, № 2 (2021)

Обложка

Весь выпуск

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Фильтрация ветвления и деформации

Абрашкин В.А.

Аннотация

Пусть $\mathscr K$ – поле формальных рядов Лорана с коэффициентами в конечном поле характеристики $p$, $\mathscr G_{< p}$ – максимальный фактор группы Галуа поля $\mathscr K$ периода $p$ и класса нильпотентности $< p$ и $\{\mathscr G_{< p}^{(v)}\}_{v\geqslant 1}$ – фильтрация подгрупп ветвления в верхней нумерации. Пусть $\mathscr G_{< p}=G(\mathscr L)$ – отождествление нильпотентной теории Артина–Шрайера: здесь $G(\mathscr L)$ – группа, полученная из проконечной $\mathbb{F}_p$-алгебры Ли $\mathscr L$ с помощью группового закона Кемпбелла–Хаусдорфа. В работе изложен новый подход к описанию идеалов $\mathscr L^{(v)}$ таких, что $G(\mathscr L^{(v)})=\mathscr G_{< p}^{(v)}$, и построению их явных образующих. Для заданного $v_0\geqslant 1$ строится эпиморфизм алгебр Ли $\overline\eta^{\dagger }\colon \mathscr L\to \overline{\mathscr L}^{\dagger }$ и действие $\Omega_U$ формальной группы порядка $p$, $\alpha_p=\operatorname{Spec}\mathbb{F}_p[U]$, $U^p=0$, на $\overline{\mathscr L}^{\dagger }$. Пусть $d\Omega_U=B^{\dagger }U$, где $B^{\dagger }\in\operatorname{Diff}\overline{\mathscr L}^{\dagger }$, и $\overline{\mathscr L}^{\dagger }[v_0]$ – идеал в $\overline{\mathscr L}^{\dagger }$, порожденный элементами $B^{\dagger }(\overline{\mathscr L}^{\dagger })$. Основной результат работы утверждает, что $\mathscr L^{(v_0)}=(\overline\eta^{\dagger })^{-1}\overline{\mathscr L}^{\dagger }[v_0]$. В заключительных параграфах этот результат связывается с явным описанием образующих идеала $\mathscr L^{(v_0)}$, полученным ранее автором, и формулируется его более эффективная версия, позволяющая восстанавливать всю фильтрацию ветвления группы $\mathscr G_{< p}$ по множеству ее скачков.
Библиография: 13 названий.

Математический сборник. 2021;212(2):3-37
pages 3-37 views

О компактификации носителя решения с задержкой по времени и об исчезновении решения

Дегтярев С.П.

Аннотация

Изучается явление компактификации носителя с задержкой по времени для решения параболического вырождающегося уравнения с двойной нелинейностью в случае медленной диффузии и сильной абсорбции. В терминах локального поведения массы начальных данных для неотрицательного решения получено достаточное условие компактификации носителя начиная с некоторого момента времени. Доказано также тождественное обращение решения в нуль за конечное время. Библиография: 21 название.
Математический сборник. 2021;212(2):38-52
pages 38-52 views

Полигомоморфизмы локально компактных групп

Неретин Ю.А.

Аннотация

Пусть $G$ и $H$ – локально компактные группы с фиксированными двусторонне инвариантными мерами Хаара. Полигомоморфизм $G\rightarrowtail H$ – это замкнутая подгруппа $R\subset G\times H$ с фиксированной мерой Хаара $\rho$, причем проекции $\rho$ на $G$ и на $H$ мажорируются мерами Хаара на $G$ и $H$. Полигомоморфизм можно рассматривать как многозначное отображение, переводящее точки в подмножества, снабженные “равномерной” мерой. Для двух полигомоморфизмов $G\rightarrowtail H$, $H\rightarrowtail K$ корректно определено произведение $G\rightarrowtail H$. Множество всех полигомоморфизмов $G\rightarrowtail K$, снабженное топологией Шаботи–Бурбаки, является метризуемым компактным пространством, произведение является раздельно непрерывным. Полигомоморфизмy $G\rightarrowtail H$ канонически соответствует оператор $L^2(H)\to L^2(G)$, являющийся частичной изометрией с точностью до постоянного множителя. В качестве примера мы рассматриваем локально компактные линейные пространства над конечными полями и находим замыкания групп линейных операторов в полугруппах полигомоморфизмов. Библиография: 40 названий.
Математический сборник. 2021;212(2):53-80
pages 53-80 views

Топологический анализ биллиарда, ограниченного софокусными квадриками, в потенциальном поле

Пустовойтов С.Е.

Аннотация

Рассмотрим биллиард в плоской области, ограниченной софокусными эллипсами и гиперболами. На материальную точку действует гуковский потенциал. Оказывается, эта динамическая система вполне интегрируема по Лиувиллю. В работе проведен топологический анализ слоения Лиувилля изоэнергетических многообразий всевозможных уровней гамильтониана и построены их полные инварианты Фоменко–Цишанга (меченые молекулы). Библиография: 14 названий.
Математический сборник. 2021;212(2):81-105
pages 81-105 views

Операторы мультипликаторного типа и приближение периодических функций одной переменной тригонометрическими полиномами

Руновский К.В.

Аннотация

Нормы образов операторов мультипликаторного типа, порожденных произвольным генератором, оцениваются в терминах наилучших приближений тригонометрическими полиномами в шкале пространств $L_p$, $1 \le p \le +\infty$, периодических функций одной переменной. В качестве следствий получены оценки качества приближения средними Фурье, обратная теорема теории приближений, теоремы сравнения и аналог неравенства Маршо для обобщенных модулей гладкости, задаваемых произвольным периодическим генератором, а также некоторые конструктивные достаточные условия обобщенной гладкости и неравенства типа Бернштейна для обобщенных производных тригонометрического полинома.Библиография: 49 названий.
Математический сборник. 2021;212(2):106-137
pages 106-137 views

Максимальные алгебры Ли среди локально нильпотентных дифференцирований

Скутин А.А.

Аннотация

Исследуются максимальные подалгебры Ли среди локально нильпотентных дифференцирований алгебры многочленов. Дж. Фройденбургом была высказана гипотеза о том, что треугольная алгебра Ли локально нильпотентных дифференцирований алгебры многочленов является максимальной алгеброй Ли, содержащейся в множестве локально нильпотентных дифференцирований, и гипотеза о том, что каждая максимальная алгебра Ли, содержащаяся в множестве локально нильпотентных дифференцирований, сопряжена треугольной алгебре Ли. В настоящей работе мы доказываем справедливость первой части гипотезы и приводим контрпример ко второй ее части. Также мы покажем, что при некотором естественном условии, наложенном на максимальную алгебру Ли, существует сопряжение, переводящее эту алгебру Ли в треугольную алгебру Ли.Библиография: 2 названия.
Математический сборник. 2021;212(2):138-146
pages 138-146 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».