Multiplicator type operators and approximation of periodic functions of one variable by trigonometric polynomials
- Authors: Runovskii K.V.1
-
Affiliations:
- Sevastopol Branch of the M.V. Lomonosov Moscow State University
- Issue: Vol 212, No 2 (2021)
- Pages: 106-137
- Section: Articles
- URL: https://ogarev-online.ru/0368-8666/article/view/142364
- DOI: https://doi.org/10.4213/sm9136
- ID: 142364
Cite item
Abstract
The norms of the images of multiplier type operators generated by an arbitrary generator are estimated in terms of the best approximations of univariate periodic functions by trigonometric polynomials in the $L_p$-spaces, $1\le p\le+\infty$. As corollaries, estimates for the quality of approximation by Fourier means, an inverse theorem of approximation theory, comparison theorems, an analogue of the Marchaud inequality for generalized moduli of smoothness defined by a periodic generator, as well as some constructive sufficient conditions for generalized smoothness and Bernstein type inequalities for generalized derivatives of trigonometric polynomials are obtained. Bibliography: 49 titles.
About the authors
Konstantin Vsevolodovich Runovskii
Sevastopol Branch of the M.V. Lomonosov Moscow State University
Email: k_runov@mail.ru
Doctor of physico-mathematical sciences, Associate professor
References
- Е. Титчмарш, Введение в теорию интегралов Фурье, ОГИЗ, М., 1948, 479 с.
- И. Стейн, Г. Вейс, Введение в гармонический анализ на евклидовых пространствах, Мир, М., 1974, 336 с.
- И. Стейн, Сингулярные интегралы и дифференциальные свойства функций, Мир, М., 1973, 342 с.
- М. Ф. Тиман, “Наилучшее приближение функций и линейные методы суммирования рядов Фурье”, Изв. АН СССР. Сер. матем., 29:3 (1965), 587–604
- Р. М. Тригуб, “Абсолютная сходимость интегралов Фурье, суммируемость рядов Фурье и приближение полиномами функций на торе”, Изв. АН СССР. Сер. матем., 44:6 (1980), 1378–1409
- E. Liflyand, S. Samko, R. Trigub, “The Wiener algebra of absolutely convergent Fourier integrals: an overview”, Anal. Math. Phys., 2:1 (2012), 1–68
- R. M. Trigub, “Fourier transformation of quasiconvex functions and functions of the class $V^*$”, J. Math. Sci. (N.Y.), 204:3 (2015), 369–378
- A. Zygmund, “Smooth functions”, Duke Math. J., 12:1 (1945), 47–76
- Н. К. Бари, С. Б. Стечкин, “Наилучшие приближения и дифференциальные свойства двух сопряженных функций”, Тр. ММО, 5, ГИТТЛ, М., 1956, 483–522
- P. L. Butzer, H. Dyckhoff, E. Görlich, R. L. Stens, “Best trigonometric approximation, fractional order derivatives and Lipschitz classes”, Canadian J. Math., 29:4 (1977), 781–793
- R. A. DeVore, G. G. Lorentz, Constructive approximation, Grundlehren Math. Wiss., 303, Springer-Verlag, Berlin, 1993, x+449 pp.
- С. А. Теляковский, “О работах С. Б. Стечкина по приближению периодических функций полиномами”, Фундамент. и прикл. матем., 3:4 (1997), 1059–1068
- В. В. Жук, Г. И. Натансон, “С. Н. Бернштейн и прямые и обратные теоремы конструктивной теории функций”, Тр. СПбMO, 8, Науч. кн., Новосибирск, 2001, 70–95
- М. К. Потапов, Б. В. Симонов, “Модули гладкости положительных порядков функций из пространств $L_p$, $1 le p le +infty$”, Современные проблемы математики и механики, 7, № 1, Изд-во мех.-матем. ф-та МГУ, М., 2011, 100–109
- К. В. Руновский, “Прямая теорема теории приближений для общего модуля гладкости”, Матем. заметки, 95:6 (2014), 899–910
- М. К. Потапов, Б. В. Симонов, С. Ю. Тихонов, Дробные модули гладкости, МАКС ПРЕСС, М., 2016, 338 с.
- B. Szökefalvi-Nagy, “Über gewisse Extremalfragen bei transformierten trigonometrischen Entwicklungen. I. Periodischer Fall”, Ber. Verh. Sächs. Akad. Leipzig, 90 (1938), 103–134
- С. Б. Стечкин, “О наилучшем приближении сопряженных функций тригонометрическими полиномами”, Изв. АН СССР. Сер. матем., 20:2 (1956), 197–206
- А. Зигмунд, Тригонометрические ряды, т. I, II, Мир, М., 1965, 615 с., 537 с.
- М. К. Потапов, “О взаимосвязи некоторых классов функций”, Матем. заметки, 2:4 (1967), 361–372
- P. L. Butzer, R. J. Nessel, Fourier analysis and approximation, v. 1, Pure Appl. Math., 40, Academic Press, New-York–London; Birkhäuser Verlag, Basel, 1971, xvi+553 pp.
- J. Boman, H. S. Shapiro, “Comparison theorems for a generalized modulus of continuity”, Ark. Mat., 9:1-2 (1971), 91–116
- J. Boman, “Equivalence of generalized moduli of continuity”, Ark. Mat., 18:1-2 (1980), 73–100
- А. И. Степанец, Классификация и приближение периодических функций, Наук. думка, Киев, 1987, 268 с.
- H. Triebel, Higher analysis, Hochschulbücher fur Math., Johann Ambrosius Barth Verlag GmbH, Leipzig, 1992, 473 pp.
- M. K. Potapov, B. V. Simonov, “On the interrelation of the generalized Besov–Nikol'skiĭ and Weyl–Nikol'skiĭ classes of functions”, Anal. Math., 22:4 (1996), 299–316
- A. I. Stepanets, Methods of approximation theory, VSP, Leiden, 2005, xviii+919 pp.
- B. V. Simonov, S. Yu. Tikhonov, “On embeddings of function classes defined by constructive characteristics”, Approximation and probability, Banach Center Publ., 72, Polish Acad. Sci. Inst. Math., Warsaw, 2006, 285–307
- Б. В. Симонов, С. Ю. Тихонов, “Теоремы вложения в конструктивной теории приближений”, Матем. сб., 199:9 (2008), 107–148
- К. В. Руновский, Приближение семействами линейных полиномиальных операторов, Дис. … докт. физ.-матем. наук, МГУ, М., 2010, 236 с.
- K. Runovski, H.-J. Schmeisser, “Smoothness and function spaces generated by homogeneous multipliers”, J. Funct. Spaces Appl., 2012 (2012), 643135, 22 pp.
- K. V. Runovski, H.-J. Schmeisser, “Moduli of smoothness related to fractional Riesz-derivatives”, Z. Anal. Anwend., 34:1 (2015), 109–125
- К. В. Руновский, “Приближение тригонометрическими полиномами, $K$-функционалы и обобщенные модули гладкости”, Матем. сб., 208:2 (2017), 70–87
- К. В. Руновский, “Обобщенная гладкость и приближение периодических функций в пространствах $ L_p$, $1
- С. Б. Стечкин, “О приближении периодических функций суммами Фейера”, Сборник работ по линейным методам суммирования рядов Фурье, Тр. МИАН СССР, 62, Изд-во АН СССР, М., 1961, 48–60
- М. Ф. Тиман, В. Г. Пономаренко, “О приближении периодических функций двух переменных суммами типа Марцинкевича”, Изв. вузов. Матем., 1975, № 9, 59–67
- К. И. Осколков, “К неравенству Лебега в равномерной метрике и на множестве полной меры”, Матем. заметки, 18:4 (1975), 515–526
- K. Runovski, H.-J. Schmeisser, “On the convergence of Fourier means and interpolation means”, J. Comput. Anal. Appl., 6:3 (2004), 211–227
- R. M. Trigub, E. S. Bellinsky, Fourier analysis and approximation of functions, Kluwer Acad. Publ., Dordrecht, 2004, xiv+585 pp.
- K. Runovski, H.-J. Schmeisser, “On approximation methods generated by Bochner–Riesz kernels”, J. Fourier Anal. Appl., 14:1 (2008), 16–38
- R. M. Trigub, “Exast order of approximation of periodic functions by linear polynomial operators”, East J. Approx., 15:1 (2009), 25–50
- В. А. Герасименко, Ю. С. Коломойцев, “Об эквивалентности $K$-функционалов и аппроксимационных методов, порожденных обобщенными ядрами Бохнера–Рисса”, Вестн. Харьк. ун-та. Сер. матем., прикл. матем. и мех., 922:61 (2010), 56–64
- В. В. Жук, “Оценки наилучших приближений периодической функции посредством линейных комбинаций значений самой функции и еe первообразных”, Аналитическая теория чисел и теория функций. 27, Зап. науч. сем. ПОМИ, 404, ПОМИ, СПб., 2012, 157–174
- К. В. Руновский, “Приближение средними Фурье и обобщенные модули гладкости”, Матем. заметки, 99:4 (2016), 574–587
- С. Б. Стечкин, “Обобщение некоторых неравенств С. Н. Бернштейна”, Докл. АН СССР, 60:9 (1948), 1511–1514
- С. Н. Бернштейн, Собрание сочинений, т. 1, Изд-во АН СССР, М., 1952, 581 с.
- В. В. Арестов, “О неравенствах С. Н. Бернштейна для алгебраических и тригонометрических полиномов”, Докл. АН СССР, 246:6 (1979), 1289–1292
- В. Е. Майоров, “Неравенства Бернштейна–Никольского и оценки норм ядер Дирихле для тригонометрических полиномов по произвольным гармоникам”, Матем. заметки, 47:6 (1990), 55–61
- А. И. Козко, “Дробные производные и неравенства для тригонометрических полиномов в пространствах с несимметричной нормой”, Изв. РАН. Сер. матем., 62:6 (1998), 125–142
Supplementary files

