Limit theorems for functionals of a branching process in random environment starting with a large number of particles

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Assume given a sequence $Z^{(k)}=Ż_{i}^{(k)}, i=0,1,…\}$, $k=1,2,…$, of critical branching processes in random environment which are only different from one another by the size $k$ of the founding generation. Assume that the step of the associated random walk belongs to the domain of attraction of a stable law. In the case $k=k(n)$, where $n$ is a positive integer parameter and $k(n)$ grows with $n$ in a certain special way, limit theorems as $n\to\infty$ are established for a process with continuous time constructed from $Z^{(k(n))}$ and for the logarithm of this process. In addition, limit theorems are proved for the moment of degeneration of the process $Z^{(k(n))}$, the maximum of this process, and the total number of particles.

About the authors

Valeriy Ivanovich Afanasyev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia

Email: viafan@mi-ras.ru
Scopus Author ID: 7003547624
ResearcherId: Q-5041-2016
Doctor of physico-mathematical sciences, Associate professor

References

  1. O. Kallenberg, Foundations of modern probability, Probab. Appl. (N. Y.), 2nd ed., Springer-Verlag, New York, 2002, xx+638 pp.
  2. J. Bertoin, Levy processes, Cambridge Tracts in Math., 121, Cambridge Univ. Press, Cambridge, 1996, x+265 pp.
  3. N. H. Bingham, “Maxima of sums of random variables and suprema of stable processes”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 26 (1973), 273–296
  4. V. Bernyk, R. C. Dalang, G. Peskir, “The law of the supremum of a stable Levy process with no negative jumps”, Ann. Probab., 36:5 (2008), 1777–1789
  5. T. Lindvall, “Limit theorems for some functionals of certain Galton–Watson branching processes”, Adv. in Appl. Probab., 6:2 (1974), 309–321
  6. G. Kersting, V. Vatutin, Discrete time branching processes in random environment, Math. Stat. Ser., 1, John Wiley & Sons, Inc., Hoboken, NJ; ISTE, London, 2017, xiv+286 pp.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2026 Afanasyev V.I.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).