Limit theorems for functionals of a branching process in random environment starting with a large number of particles

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Assume given a sequence $Z^{(k)}=Ż_{i}^{(k)}, i=0,1,…\}$, $k=1,2,…$, of critical branching processes in random environment which are only different from one another by the size $k$ of the founding generation. Assume that the step of the associated random walk belongs to the domain of attraction of a stable law. In the case $k=k(n)$, where $n$ is a positive integer parameter and $k(n)$ grows with $n$ in a certain special way, limit theorems as $n\to\infty$ are established for a process with continuous time constructed from $Z^{(k(n))}$ and for the logarithm of this process. In addition, limit theorems are proved for the moment of degeneration of the process $Z^{(k(n))}$, the maximum of this process, and the total number of particles.

Sobre autores

Valeriy Afanasyev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia

Email: viafan@mi-ras.ru
Scopus Author ID: 7003547624
Researcher ID: Q-5041-2016
Doctor of physico-mathematical sciences, Associate professor

Bibliografia

  1. O. Kallenberg, Foundations of modern probability, Probab. Appl. (N. Y.), 2nd ed., Springer-Verlag, New York, 2002, xx+638 pp.
  2. J. Bertoin, Levy processes, Cambridge Tracts in Math., 121, Cambridge Univ. Press, Cambridge, 1996, x+265 pp.
  3. N. H. Bingham, “Maxima of sums of random variables and suprema of stable processes”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 26 (1973), 273–296
  4. V. Bernyk, R. C. Dalang, G. Peskir, “The law of the supremum of a stable Levy process with no negative jumps”, Ann. Probab., 36:5 (2008), 1777–1789
  5. T. Lindvall, “Limit theorems for some functionals of certain Galton–Watson branching processes”, Adv. in Appl. Probab., 6:2 (1974), 309–321
  6. G. Kersting, V. Vatutin, Discrete time branching processes in random environment, Math. Stat. Ser., 1, John Wiley & Sons, Inc., Hoboken, NJ; ISTE, London, 2017, xiv+286 pp.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Afanasyev V.I., 2026

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).