Unitary transform diagonalizing the Confluent Hypergeometric kernel

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We consider the image of the operator inducing the determinantal point process with the confluent hypergeometric kernel. The space is described as the image of $L_2[0,1]$ under a unitary transform, which generalizes the Fourier transform. For the derived transform we prove a counterpart of the Paley-Wiener theorem. We use the theorem to prove that the corresponding analogue of the Wiener-Hopf operator is a unitary equivalent of the usual Wiener-Hopf operator, which implies that it shares the same factorization properties and Widom's trace formula. Finally, using the introduced transform we give explicit formulae for the hierarchical decomposition of the image of the operator induced by the confluent hypergeometric kernel.

About the authors

Sergei Milhailovich Gorbunov

Ivannikov Institute for System Programming of the Russian Academy of Science, Moscow, Russia; Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia; Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia

Email: gorbunov.sm@phystech.edu

References

  1. G. Szegő, Collected papers, v. I, Contemp. Mathematicians, 1915–1927, Birkhäuser, Boston, MA, 1982, xx+857 pp.
  2. E. L. Basor, Yang Chen, “Toeplitz determinants from compatibility conditions”, Ramanujan J., 16:1 (2008), 25–40
  3. E. L. Basor, T. Ehrhardt, “Asymptotics of determinants of Bessel operators”, Comm. Math. Phys., 234:3 (2003), 491–516
  4. E. L. Basor, H. Widom, “Determinants of Airy operators and applications to random matrices”, J. Stat. Phys., 96:1-2 (1999), 1–20
  5. A. Borodin, P. Deift, “Fredholm determinants, Jimbo–Miwa–Ueno $tau$-functions, and representation theory”, Comm. Pure Appl. Math., 55:9 (2002), 1160–1230
  6. A. Borodin, G. Olshanski, “Infinite random matrices and ergodic measures”, Comm. Math. Phys., 223:1 (2001), 87–123
  7. P. Bourgade, A. Nikeghbali, A. Rouault, “Ewens measures on compact groups and hypergeometric kernels”, Seminaire de Probabilites XLIII, Lecture Notes in Math., 2006, Springer, Berlin, 2011, 351–377
  8. A. I. Bufetov, Yanqi Qiu, A. Shamov, “Kernels of conditional determinantal measures and the Lyons–Peres completeness conjecture”, J. Eur. Math. Soc. (JEMS), 23:5 (2021), 1477–1519
  9. P. Deift, I. Krasovsky, J. Vasilevska, “Asymptotics for a determinant with a confluent hypergeometric kernel”, Int. Math. Res. Not. IMRN, 2011:9 (2011), 2117–2160
  10. O. Macchi, “The coincidence approach to stochastic point processes”, Adv. in Appl. Probab., 7 (1975), 83–122
  11. W. Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987, xiv+416 pp.
  12. B. Simon, Orthogonal polynomials on the unit circle, Part 1. Classical theory, Amer. Math. Soc. Colloq. Publ., 54, Part 1, Amer. Math. Soc., Providence, RI, 2005, xxvi+466 pp.
  13. B. Simon, Trace ideals and their applications, Math. Surveys Monogr., 120, 2nd ed., Amer. Math. Soc., Providence, RI, 2005, viii+150 pp.
  14. B. Simon, Operator theory, Compr. Course Anal., 4, Amer. Math. Soc., Providence, RI, 2015, xviii+749 pp.
  15. T. Shirai, Y. Takahashi, “Random point fields associated with certain Fredholm determinants. I. Fermion, Poisson and boson point processes”, J. Funct. Anal., 205:2 (2003), 414–463
  16. T. Shirai, Y. Takahashi, “Random point fields associated with certain Fredholm determinants. II. Fermion shifts and their ergodic and Gibbs properties”, Ann. Probab., 31:3 (2003), 1533–1564
  17. C. A. Tracy, H. Widom, “Level-spacing distributions and the Airy kernel”, Phys. Lett. B, 305:1-2 (1993), 115–118
  18. C. A. Tracy, H. Widom, “Level spacing distributions and the Bessel kernel”, Comm. Math. Phys., 161:2 (1994), 289–309
  19. H. Widom, “A trace formula for Wiener–Hopf operators”, J. Operator Theory, 8:2 (1982), 279–298

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Gorbunov S.M.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).