Billiard with alternating slipping
- 作者: Zav'yalov V.N.1,2
-
隶属关系:
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
- Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia
- 期: 卷 216, 编号 9 (2025)
- 页面: 42-68
- 栏目: Articles
- URL: https://ogarev-online.ru/0368-8666/article/view/309463
- DOI: https://doi.org/10.4213/sm10213
- ID: 309463
如何引用文章
详细
作者简介
Vladimir Zav'yalov
Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia; Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia
Email: vnzavyalov@mail.ru
参考
- Дж. Д. Биркгоф, Динамические системы, Изд. дом “Удмуртский университет”, Ижевск, 1999, 408 с.
- В. В. Козлов, Д. В. Трещев, Биллиарды. Генетическое введение в динамику систем с ударами, Изд-во Моск. ун-та, М., 1991, 168 с.
- V. Dragovic, M. Radnovic, “Bifurcations of Liouville tori in elliptical billiards”, Regul. Chaotic Dyn., 14:4-5 (2009), 479–494
- В. Драгович, М. Раднович, Интегрируемые биллиарды, квадрики и многомерные поризмы Понселе, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2010, 338 с.
- В. В. Фокичева, “Описание особенностей системы “биллиард в эллипсе” ”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2012, № 5, 31–34
- В. В. Фокичева, “Описание особенностей системы бильярда в областях, ограниченных софокусными эллипсами или гиперболами”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2014, № 4, 18–27
- В. В. Фокичева, “Топологическая классификация биллиардов в локально плоских областях, ограниченных дугами софокусных квадрик”, Матем. сб., 206:10 (2015), 127–176
- В. В. Ведюшкина, И. С. Харчева, “Биллиардные книжки моделируют все трехмерные бифуркации интегрируемых гамильтоновых систем”, Матем. сб., 209:12 (2018), 17–56
- В. В. Ведюшкина, А. Т. Фоменко, И. С. Харчева, “Моделирование невырожденных бифуркаций замыканий решений интегрируемых систем с двумя степенями свободы интегрируемыми топологическими биллиардами”, Докл. РАН, 479:6 (2018), 607–610
- В. В. Ведюшкина (Фокичева), А. Т. Фоменко, “Интегрируемые топологические биллиарды и эквивалентные динамические системы”, Изв. РАН. Сер. матем., 81:4 (2017), 20–67
- В. В. Ведюшкина, В. А. Кибкало, “Биллиардные книжки малой сложности и реализация слоений Лиувилля интегрируемых систем”, Чебышевский сб., 23:1 (2022), 53–82
- A. T. Fomenko, V. A. Kibkalo, “Topology of Liouville foliations of integrable billiards on table-complexes”, Eur. J. Math., 8:4 (2022), 1392–1423
- А. Т. Фоменко, В. В. Ведюшкина, “Биллиарды и интегрируемые системы”, УМН, 78:5(473) (2023), 93–176
- A. T. Fomenko, V. V. Vedyushkina, V. N. Zav'yalov, “Liouville foliations of topological billiards with slipping”, Russ. J. Math. Phys., 28:1 (2021), 37–55
- В. В. Ведюшкина (Фокичева), А. Т. Фоменко, “Интегрируемые геодезические потоки на ориентируемых двумерных поверхностях и топологические биллиарды”, Изв. РАН. Сер. матем., 83:6 (2019), 63–103
- В. В. Козлов, “Топологические препятствия к интегрируемости натуральных механических систем”, Докл. АН СССР, 249:6 (1979), 1299–1302
- В. В. Ведюшкина, В. Н. Завьялов, “Реализация геодезических потоков с линейным интегралом биллиардами с проскальзыванием”, Матем. сб., 213:12 (2022), 31–52
- В. Н. Завьялов, “Биллиард с проскальзыванием на любой рациональный угол”, Матем. сб., 214:9 (2023), 3–26
- В. В. Ведюшкина, В. А. Кибкало, А. Т. Фоменко, “Топологическое моделирование интегрируемых систем биллиардами: реализация числовых инвариантов”, Докл. РАН. Матем., информ., проц. упр., 493 (2020), 9–12
- В. В. Ведюшкина, В. А. Кибкало, “Реализация бильярдами числового инварианта расслоения Зейферта интегрируемых систем”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2020, № 4, 22–28
- В. В. Ведюшкина, “Локальное моделирование бильярдами слоений Лиувилля: реализация реберных инвариантов”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2021, № 2, 28–32
- А. В. Болсинов, А. Т. Фоменко, Интегрируемые гамильтоновы системы. Геометрия, топология, классификация, т. 1, 2, Изд. дом “Удмуртский университет”, Ижевск, 1999, 444 с., 447 с.
- В. В. Ведюшкина, А. Т. Фоменко, “Силовые эволюционные биллиарды и биллиардная эквивалентность случая Эйлера и случая Лагранжа”, Докл. РАН. Матем., информ., проц. упр., 496 (2021), 5–9
- А. Т. Фоменко, “Биллиарды переменной конфигурации и биллиарды с проскальзыванием в гамильтоновой геометрии и топологии”, Математика и теоретические компьютерные науки, 1:1 (2023), 49–68
- А. Т. Фоменко, В. В. Ведюшкина, “Эволюционные силовые биллиарды”, Изв. РАН. Сер. матем., 86:5 (2022), 116–156
- A. T. Fomenko, V. V. Vedyushkina, “Billiards with changing geometry and their connection with the implementation of the Zhukovsky and Kovalevskaya cases”, Russ. J. Math. Phys., 28:3 (2021), 317–332
- С. В. Матвеев, А. Т. Фоменко, Алгоритмические и компьютерные методы в трехмерной топологии, Изд-во Моск. ун-та, М., 1991, 303 с.
- А. Т. Фоменко, В. В. Ведюшкина, “Бильярды и интегрируемость в геометрии и физике. Новый взгляд и новые возможности”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2019, № 3, 15–25
- В. В. Ведюшкина, “Интегрируемые биллиарды реализуют торические слоения на линзовых пространствах и 3-торе”, Матем. сб., 211:2 (2020), 46–73
- В. В. Ведюшкина, “Топологический тип изоэнергетических поверхностей биллиардных книжек”, Матем. сб., 212:12 (2021), 3–19
- A. T. Fomenko, V. V. Vedyushkina, “Implementation of integrable systems by topological, geodesic billiards with potential and magnetic field”, Russ. J. Math. Phys., 26:3 (2019), 320–333
补充文件
