Half-duplex communication complexity with adversary can be less than the classical communication complexity

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Half-duplex communication complexity with adversary was defined in [11]. Half-duplex communication protocols generalize classical protocols defined by Yao in [2]. It has been unknown so far whether or not the communication complexities defined by these models are different. We answer this question: we exhibit a function whose half-duplex communication complexity with adversary is strictly less than its classical communication complexity.

Авторлар туралы

Nikolai Vereshchagin

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia; Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia

Email: nikolay.vereshchagin@math.msu.ru; nikolay.vereshchagin@gmail.com

Mikhail Dektyarev

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia

Email: mikhail.dektiarev@gmail.com

Әдебиет тізімі

  1. Y. Dementiev, A. Ignatiev, V. Sidelnik, A. Smal, M. Ushakov, “New bounds on the half-duplex communication complexity”, SOFSEM 2021: theory and practice of computer science, Lecture Notes in Comput. Sci., 12607, Springer, Cham, 2021, 233–248
  2. K. Hoover, R. Impagliazzo, I. Mihajlin, A. V. Smal, “Half-duplex communication complexity”, 29th international symposium on algorithms and computation (ISAAC 2018), LIPIcs. Leibniz Int. Proc. Inform., 123, Schloss Dagstuhl. Leibniz-Zentrum für Informatik, Wadern, 2018, 10, 12 pp.
  3. M. Karchmer, A. Wigderson, “Monotone circuits for connectivity require super-logarithmic depth”, STOC {'}88: Proceedings of the 20th annual ACM symposium on theory of computing (Chicago, IL, 1988), ACM, New York, 1988, 539–550
  4. A. Ignatiev, I. Mihajlin, A. Smal, “Super-cubic lower bound for generalized Karchmer–Wigderson games”, 33rd international symposium on algorithms and computation (ISAAC 2022), LIPIcs. Leibniz Int. Proc. Inform., 248, Schloss Dagstuhl. Leibniz-Zentrum für Informatik, Wadern, 2022, 66, 18 pp.
  5. Hao Wu, An improved composition theorem of a universal relation and most functions via effective restriction
  6. O. Meir, “Toward better depth lower bounds: two results on the multiplexor relation”, Comput. Complex., 29:1 (2020), 4, 25 pp.
  7. O. Meir, Toward better depth lower bounds: a KRW-like theorem for strong composition
  8. A. Nolin, Communication complexity: large output functions, partition bounds, and quantum nonlocality, Ph.D. thesis, Univ. Paris, 2020, 140 pp.
  9. E. Kushilevitz, N. Nisan, Communication complexity, Reprint of 1997 original, Cambridge Univ. Press, Cambridge, 2006, xiv+189 pp.
  10. А. В. Смаль, Доказательство нижних оценок на размер формул для булевых функций методами коммуникационной сложности, Дисс. … канд. физ.-матем. наук, ПОМИ РАН, СПб., 2022, 114 с.
  11. A. C.-C. Yao, “Some complexity questions related to distributive computing (Preliminary report)”, STOC{'}79: Proceedings of the eleventh annual ACM symposium on theory of computing (Atlanta, GA, 1979), ACM, New York, 1979, 209–213

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Vereshchagin N.K., Dektyarev M.V., 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).