Magic billiards: the case of elliptic boundaries

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We introduce a novel concept of magic billiards, which can be viewed as an umbrella unifying several well-known generalisations of mathematical billiards. We analyse the properties of magic billiards in the case of elliptic boundaries. We provide explicit conditions for periodicity in algebro-geometric, analytic and polynomial forms. A topological description of these billiards is given using Fomenko graphs.

About the authors

Vladimir Il'ich Dragović

Department of Mathematical Sciences, University of Texas at Dallas, Richardson, TX, USA; Mathematical Institute, Serbian Academy of Sciences and Arts, Belgrade, Republic of Serbia

Author for correspondence.
Email: vladimir.dragovic@utdallas.edu

Milena Radnović

School of Mathematics and Statistics, University of Sydney, Sydney, Australia; Mathematical Institute, Serbian Academy of Sciences and Arts, Belgrade, Republic of Serbia; University of New South Wales, Sydney, Australia

Email: milena.radnovic@sydney.edu.au

References

  1. Дж. Д. Биркгоф, Динамические системы, Изд. дом “Удмуртский университет”, Ижевск, 1999, 408 с.
  2. С. В. Болотин, “Интегрируемые биллиарды Биркгофа”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 1990, № 2, 33–36
  3. В. В. Козлов, Д. В. Трещев, Биллиарды. Генетическое введение в динамику систем с ударами, Изд-во Моск. ун-та, М., 1991, 168 с.
  4. С. Табачников, Геометрия и биллиарды, НИЦ “Регулярная и хаотическая динамика”, Ин-т компьютерных исследований, М.–Ижевск, 2011, 180 с.
  5. В. И. Арнольд, Математические методы классической механики, 3-е изд., испр. и доп., Наука, М., 1989, 472 с.
  6. А. Т. Фоменко, “Топология поверхностей постоянной энергии некоторых интегрируемых гамильтоновых систем и препятствия к интегрируемости”, Изв. АН СССР. Сер. матем., 50:6 (1986), 1276–1307
  7. А. Т. Фоменко, Х. Цишанг, “Топологический инвариант и критерий эквивалентности интегрируемых гамильтоновых систем с двумя степенями свободы”, Изв. АН СССР. Сер. матем., 54:3 (1990), 546–575
  8. А. В. Болсинов, А. Т. Фоменко, Интегрируемые гамильтоновы системы. Геометрия, топология, классификация, т. 1, 2, Изд. дом “Удмуртский университет”, Ижевск, 1999, 444 с., 447 с.
  9. V. Dragovic, M. Radnovic, “Bifurcations of Liouville tori in elliptical billiards”, Regul. Chaotic Dyn., 14:4-5 (2009), 479–494
  10. В. Драгович, М. Раднович, “Интегрируемые биллиарды и квадрики”, УМН, 65:2(392) (2010), 133–194
  11. В. Драгович, М. Раднович, Интегрируемые биллиарды, квадрики и многомерные поризмы Понселе, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2010, 338 с.
  12. В. В. Фокичева, “Классификация биллиардных движений в областях, ограниченных софокусными параболами”, Матем. сб., 205:8 (2014), 139–160
  13. M. Radnovic, “Topology of the elliptical billiard with the Hooke's potential”, Theoret. Appl. Mech. (Belgrade), 42:1 (2015), 1–9
  14. В. Драгович, М. Раднович, “Топологические инварианты эллиптических биллиардов и геодезических потоков эллипсоидов в пространстве Минковского”, Фундамент. и прикл. матем., 20:2 (2015), 51–64
  15. В. В. Ведюшкина, И. С. Харчева, “Биллиардные книжки моделируют все трехмерные бифуркации интегрируемых гамильтоновых систем”, Матем. сб., 209:12 (2018), 17–56
  16. A. T. Fomenko, V. V. Vedyushkina, “Implementation of integrable systems by topological, geodesic billiards with potential and magnetic field”, Russ. J. Math. Phys., 26:3 (2019), 320–333
  17. A. T. Fomenko, V. V. Vedyushkina, “Singularities of integrable Liouville systems, reduction of integrals to lower degree and topological billiards: recent results”, Theor. Appl. Mech., 46:1 (2019), 47–63
  18. M. Pnueli, V. Rom-Kedar, “On the structure of Hamiltonian impact systems”, Nonlinearity, 34:4 (2021), 2611–2658
  19. В. Драгович, Ш. Гасиорек, М. Раднович, “Интегрируемые биллиарды на гиперболоиде Минковского: экстремальные многочлены и топология”, Матем. сб., 213:9 (2022), 34–69
  20. V. Dragovic, S. Gasiorek, M. Radnovic, “Billiard ordered games and books”, Regul. Chaotic Dyn., 27:2 (2022), 132–150
  21. Г. В. Белозеров, А. Т. Фоменко, “Функции вращения интегрируемых биллиардов как траекторные инварианты”, Докл. РАН. Матем., информ., проц. упр., 515 (2024), 5–10
  22. А. В. Болсинов, С. В. Матвеев, А. Т. Фоменко, “Топологическая классификация интегрируемых гамильтоновых систем с двумя степенями свободы. Список систем малой сложности”, УМН, 45:2(272) (1990), 49–77
  23. M. Radnovic, V. Rom-Kedar, “Foliations of isonergy surfaces and singularities of curves”, Regul. Chaotic Dyn., 13:6 (2008), 645–668
  24. А. В. Болсинов, А. В. Борисов, И. С. Мамаев, “Топология и устойчивость интегрируемых систем”, УМН, 65:2(392) (2010), 71–132
  25. В. А. Кибкало, А. Т. Фоменко, И. С. Харчева, “Реализация интегрируемых гамильтоновых систем биллиардными книжками”, Тр. ММО, 82, № 1, МЦНМО, М., 2021, 45–78
  26. А. Т. Фоменко, В. В. Ведюшкина, “Биллиарды и интегрируемые системы”, УМН, 78:5(473) (2023), 93–176
  27. A. T. Fomenko, V. V. Vedyushkina, V. N. Zav'yalov, “Liouville foliations of topological billiards with slipping”, Russ. J. Math. Phys., 28:1 (2021), 37–55
  28. A. T. Fomenko, V. V. Vedyushkina, “Billiards with changing geometry and their connection with the implementation of the Zhukovsky and Kovalevskaya cases”, Russ. J. Math. Phys., 28:3 (2021), 317–332
  29. В. В. Ведюшкина, В. Н. Завьялов, “Реализация геодезических потоков с линейным интегралом биллиардами с проскальзыванием”, Матем. сб., 213:12 (2022), 31–52
  30. A. T. Fomenko, “Billiards of variable configuration and billiards with slipping in Hamiltonian geometry and topology”, Lobachevskii J. Math., 44:10 (2023), 4512–4522
  31. В. Н. Завьялов, “Биллиард с проскальзыванием на любой рациональный угол”, Матем. сб., 214:9 (2023), 3–26
  32. S. Tabachnikov, “Introducing projective billiards”, Ergodic Theory Dynam. Systems, 17:4 (1997), 957–976
  33. E. Gutkin, S. Tabachnikov, “Billiards in Finsler and Minkowski geometries”, J. Geom. Phys., 40:3-4 (2002), 277–301
  34. M. Radnovic, “A note on billiard systems in Finsler plane with elliptic indicatrices”, Publ. Inst. Math. (Beograd) (N.S.), 74:88 (2003), 97–101
  35. B. Khesin, S. Tabachnikov, “Pseudo-Riemannian geodesics and billiards”, Adv. Math., 221:4 (2009), 1364–1396
  36. V. Dragovic, M. Radnovic, “Ellipsoidal billiards in pseudo-Euclidean spaces and relativistic quadrics”, Adv. Math., 231:3-4 (2012), 1173–1201
  37. V. Dragovic, M. Radnovic, “Minkowski plane, confocal conics, and billiards”, Publ. Inst. Math. (Beograd) (N.S.), 94:108 (2013), 17–30
  38. A. K. Adabrah, V. Dragovic, M. Radnovic, “Periodic billiards within conics in the Minkowski plane and Akhiezer polynomials”, Regul. Chaotic Dyn., 24:5 (2019), 464–501
  39. A. Glutsyuk, V. S. Matveev, If a Minkowski billiard is projective, it is the standard billiard
  40. T. D. Drivas, D. Glukhovskiy, B. Khesin, Pensive billiards, point vortices, and pucks
  41. В. В. Фокичева, “Топологическая классификация биллиардов в локально плоских областях, ограниченных дугами софокусных квадрик”, Матем. сб., 206:10 (2015), 127–176
  42. V. Dragovic, M. Radnovic, “Caustics of Poncelet polygons and classical extremal polynomials”, Regul. Chaotic Dyn., 24:1 (2019), 1–35
  43. V. Dragovic, M. Radnovic, “Periodic ellipsoidal billiard trajectories and extremal polynomials”, Comm. Math. Phys., 372:1 (2019), 183–211
  44. Е. А. Кудрявцева, “Интегрируемые по Лиувиллю обобщeнные биллиардные потоки и теоремы типа Понселе”, Фундамент. и прикл. матем., 20:3 (2015), 113–152
  45. V. Dragovic, M. Radnovic, “Cayley-type conditions for billiards within $k$ quadrics in $mathbb R^d$”, J. Phys. A, 37:4 (2004), 1269–1276

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Dragović V.I., Radnović M.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».