Supersmooth tile $\mathrm B$-splines
- Authors: Zaitseva T.I.1,2
-
Affiliations:
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
- Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia
- Issue: Vol 216, No 3 (2025)
- Pages: 69-95
- Section: Articles
- URL: https://ogarev-online.ru/0368-8666/article/view/306687
- DOI: https://doi.org/10.4213/sm10212
- ID: 306687
Cite item
Abstract
A tile is a self-affine compact subset of $\mathbb R^n$ whose integer translates tile the space. A tile $\mathrm B$-spline is a self-convolution of the characteristic function of the tile, similarly to $\mathrm B$-splines, which are self-convolutions of the characteristic functions of closed intervals. It is known that tile $\mathrm B$-splines, even ones with ‘fractal’ support, can be ‘supersmooth’, that is, their smoothness can exceed that of classical $\mathrm B$-splines of the same order. We evaluate the smoothness of tile $\mathrm B$-splines in $W_2^k(\mathbb R^n)$ by applying a method developed recently and based on Littlewood–Paley type estimates for refinement equations. We adapt this method for tile $\mathrm B$-splines, thereby obtaining 20 families with the property of supersmoothness. We put forward the conjecture, supported by numerical experiments, that this classification is complete if the number of digits is small. Bibliography: 51 titles.
Keywords
About the authors
Tatyana Ivanovna Zaitseva
Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia; Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia
Author for correspondence.
Email: zaitsevatanja@gmail.com
without scientific degree, no status
References
- И. Добеши, Десять лекций по вейвлетам, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2001, 464 с.
- В. С. Козякин, “Алгебраическая неразрешимость задачи об абсолютной устойчивости рассинхронизованных систем”, Автомат. и телемех., 1990, № 6, 41–47
- И. Я. Новиков, В. Ю. Протасов, М. А. Скопина, Теория всплесков, Физматлит, М., 2005, 613 с.
- В. Ю. Протасов, “Обобщенный совместный спектральный радиус. Геометрический подход”, Изв. РАН. Сер. матем., 61:5 (1997), 99–136
- В. Ю. Протасов, “Фрактальные кривые и всплески”, Изв. РАН. Сер. матем., 70:5 (2006), 123–162
- М. А. Скопина, Ю. А. Фарков, “Функции типа Уолша на $M$-положительных множествах в $mathbb{R}^d$”, Матем. заметки, 111:4 (2022), 631–635
- Т. И. Зайцева, “Многомерные тайловые $mathrm{B}$-сплайны”, Изв. РАН. Сер. матем., 87:2 (2023), 89–132
- Т. И. Зайцева, В. Ю. Протасов, “Самоподобные 2-аттракторы и тайлы”, Матем. сб., 213:6 (2022), 71–110
- S. G. Roux, M. Clausel, B. Vedel, S. Jaffard, P. Abry, “Self-similar anisotropic texture analysis: the hyperbolic wavelet transform contribution”, IEEE Trans. Image Process., 22:11 (2013), 4353–4363
- M. Bownik, Anisotropic Hardy spaces and wavelets, Mem. Amer. Math. Soc., 164, no. 781, Amer. Math. Soc., Providence, RI, 2003, vi+122 pp.
- C. Bandt, G. Gelbrich, “Classification of self-affine lattice tilings”, J. London Math. Soc. (2), 50:3 (1994), 581–593
- V. D. Blondel, S. Gaubert, J. N. Tsitsiklis, “Approximating the spectral radius of sets of matrices in the max-algebra is NP-hard”, IEEE Trans. Automat. Control, 45:9 (2000), 1762–1765
- V. D. Blondel, J. N. Tsitsiklis, “The boundedness of all products of a pair of matrices is undecidable”, Systems Control Lett., 41:2 (2000), 135–140
- C. Cabrelli, C. Heil, U. M. Molter, “Accuracy of lattice translates of several multidimensional refinable functions”, J. Approx. Theory, 95:1 (1998), 5–52
- A. S. Cavaretta, W. Dahmen, C. A. Micchelli, Stationary subdivision, Mem. Amer. Math. Soc., 93, no. 453, Amer. Math. Soc., Providence, RI, 1991, vi+186 pp.
- M. Charina, “Vector multivariate subdivision schemes: comparison of spectral methods for their regularity analysis”, Appl. Comput. Harmon. Anal., 32:1 (2012), 86–108
- M. Charina, M. Donatelli, L. Romani, V. Turati, “Multigrid methods: grid transfer operators and subdivision schemes”, Linear Algebra Appl., 520 (2017), 151–190
- M. Charina, M. Donatelli, L. Romani, V. Turati, “Anisotropic bivariate subdivision with applications to multigrid”, Appl. Numer. Math., 135 (2019), 333–366
- M. Charina, Th. Mejstrik, “Multiple multivariate subdivision schemes: matrix and operator approaches”, J. Comput. Appl. Math., 349 (2019), 279–291
- M. Charina, V. Yu. Protasov, “Regularity of anisotropic refinable functions”, Appl. Comput. Harmon. Anal., 47:3 (2019), 795–821
- Di-Rong Chen, Rong-Qing Jia, S. D. Riemenschneider, “Convergence of vector subdivision schemes in Sobolev spaces”, Appl. Comput. Harmon. Anal., 12:1 (2002), 128–149
- A. Cohen, K. Gröchenig, L. F. Villemoes, “Regularity of multivariate refinable functions”, Constr. Approx., 15:2 (1999), 241–255
- J.-P. Conze, A. Raugi, “Fonctions harmoniques pour un operateur de transition et applications”, Bull. Soc. Math. France, 118:3 (1990), 273–310
- G. Derfel, N. Dyn, D. Levin, “Generalized refinement equations and subdivision processes”, J. Approx. Theory, 80:2 (1995), 272–297
- G. Deslauriers, S. Dubuc, “Symmetric iterative interpolation processes”, Constr. Approx., 5:1 (1989), 49–68
- T. Eirola, “Sobolev characterization of solutions of dilation equations”, SIAM J. Math. Anal., 23:4 (1992), 1015–1030
- De-Jun Feng, N. Sidorov, “Growth rate for beta-expansions”, Monatsh. Math., 162:1 (2011), 41–60
- K. Gröchenig, A. Haas, “Self-similar lattice tilings”, J. Fourier Anal. Appl., 1:2 (1994), 131–170
- B. Han, “Computing the smoothness exponent of a symmetric multivariate refinable function”, SIAM J. Matrix Anal. Appl., 24:3 (2003), 693–714
- B. Han, “Solutions in Sobolev spaces of vector refinement equations with a general dilation matrix”, Adv. Comput. Math., 24:1-4 (2006), 375–403
- D. Hacon, N. C. Saldanha, J. J. P. Veerman, “Remarks on self-affine tilings”, Exp. Math., 3:4 (1994), 317–327
- Rong-Qing Jia, “Characterization of smoothness of multivariate refinable functions in Sobolev spaces”, Trans. Amer. Math. Soc., 351:10 (1999), 4089–4112
- Qingtang Jiang, “Multivariate matrix refinable functions with arbitrary matrix dilation”, Trans. Amer. Math. Soc., 351:6 (1999), 2407–2438
- Rong-Qing Jia, Qingtang Jiang, “Spectral analysis of the transition operator and its applications to smoothness analysis of wavelets”, SIAM J. Matrix Anal. Appl., 24:4 (2003), 1071–1109
- Rong-Qing Jia, Shurong Zhang, “Spectral properties of the transition operator associated to a multivariate refinement equation”, Linear Algebra Appl., 292:1-3 (1999), 155–178
- I. Kirat, Ka-Sing Lau, “Classification of integral expanding matrices and self-affine tiles”, Discrete Comput. Geom., 28:1 (2002), 49–73
- R. Kapica, J. Morawiec, “Refinement type equations and Grincevičjus series”, J. Math. Anal. Appl., 350:1 (2009), 393–400
- A. Krivoshein, V. Protasov, M. Skopina, Multivariate wavelet frames, Ind. Appl. Math., Springer, Singapore, 2016, xiii+248 pp.
- J. C. Lagarias, Yang Wang, “Integral self-affine tiles in $mathbb R^n$. II. Lattice tilings”, J. Fourier Anal. Appl., 3:1 (1997), 83–102
- Ka-Sing Lau, Mang-Fai Ma, Jianrong Wang, “On some sharp regularity estimations of $L^2$-scaling functions”, SIAM J. Math. Anal., 27:3 (1996), 835–864
- D. Mekhontsev, IFStile software
- C. Möller, U. Reif, “A tree-based approach to joint spectral radius determination”, Linear Algebra Appl., 463 (2014), 154–170
- J. Peter, U. Reif, Subdivision surfaces, Geom. Comput., 3, Springer-Verlag, Berlin, 2008, xvi+204 pp.
- V. Yu. Protasov, “The Euler binary partition function and subdivision schemes”, Math. Comp., 86:305 (2017), 1499–1524
- A. Ron, Zuowei Shen, “The Sobolev regularity of refinable functions”, J. Approx. Theory, 106:2 (2000), 185–225
- J. Schur, “Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind”, J. Reine Angew. Math., 1917:147 (1917), 205–232
- L. F. Villemoes, “Wavelet analysis of refinement equations”, SIAM J. Math. Anal., 25:5 (1994), 1433–1460
- L. F. Villemoes, “Energy moments in time and frequency for two-scale difference equation solutions and wavelets”, SIAM J. Math. Anal., 23:6 (1992), 1519–1543
- V. G. Zakharov, “Elliptic scaling functions as compactly supported multivariate analogs of the B-splines”, Int. J. Wavelets Multiresolut. Inf. Process., 12:2 (2014), 1450018, 23 pp.
- V. Yu. Protasov, T. Zaitseva, “Anisotropic refinable functions and the tile B-splines”, Appl. Comput. Harmon. Anal., 75 (2025), 101727, 20 pp.
- S. Zube, “Number systems, $alpha$-splines and refinement”, J. Comput. Appl. Math., 172:2 (2004), 207–231
Supplementary files
