John–Löwner ellipsoids and entropy of multiplier operators on rank $1$ compact homogeneous manifolds

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We present a new method of the evaluation of entropy, which is based on volume estimates for John–Löwner ellipsoids induced by the eigenfunctions of Laplace–Beltrami operator on compact homogeneous manifolds $\mathbb{M}^{d}$ of rank $1$. This approach gives the sharp orders of entropy in the situations where the known methods meet difficulties of fundamental nature. In particular, we calculate the sharp orders of the entropy of the Sobolev classes $W_{p}^{\gamma }(\mathbb{M}^{d})$, $\gamma>0$, in $L_{q}(\mathbb{M}^{d})$, $1 \leq q \leq p \leq \infty$. Bibliography: 35 titles.

About the authors

Alexander Konstantinovich Kushpel'

Department of Mathematics, Çankaya University, Ankara, Turkey

Author for correspondence.
Email: kushpel@cankaya.edu.tr
Doctor of physico-mathematical sciences, Professor

References

  1. М. Ш. Бирман, М. З. Соломяк, “Кусочно-полиномиальные приближения функций классов $W^alpha_p$”, Матем. сб., 73(115):3 (1967), 331–355
  2. A. Bonami, J. L. Clerc, “Sommes de Cesàro et multiplicateurs des developpements en harmoniques spheriques”, Trans. Amer. Math. Soc., 183 (1973), 223–263
  3. B. Bordin, A. K. Kushpel, J. Levesley, S. A. Tozoni, “Estimates of $n$-widths of Sobolev's classes on compact globally symmetric spaces of rank one”, J. Funct. Anal., 202:2 (2003), 307–326
  4. J. Bourgain, V. D. Milman, “New volume ratio properties for convex symmetric bodies in $mathbb{R}^{n}$”, Invent. Math., 88:2 (1987), 319–340
  5. E. Cartan, “Sur la determination d'un système orthogonal complet dans un espace de Riemann symetrique clos”, Rend. Circ. Mat. Palermo, 53 (1929), 217–252
  6. L. Danzer, D. Laugwitz, H. Lenz, “Über das Löwnersche Ellipsoid und sein Analogon unter den einem Eikörper einbeschriebenen Ellipsoiden”, Arch. Math. (Basel), 8 (1957), 214–219
  7. R. Gangolli, “Positive definite kernels on homogeneous spaces and certain stochastis processes related to Levy's Brownian motion of several parameters”, Ann. Inst. H. Poincare Sect. B (N.S.), 3:2 (1967), 121–226
  8. E. Gine M., “The addition formula for the eigenfunctions of the Laplacian”, Adv. Math., 18:1 (1975), 102–107
  9. F. Jarad, A. Kushpel, K. Taş, “On the optimality of the trigonometric system”, J. Complexity, 56 (2020), 101429, 12 pp.
  10. F. John, “Extremum problems with inequalities as subsidiary conditions”, Studies and essays, Presented to R. Courant on his 60th birthday, Jan. 8, 1948, Intersci. Publ., New York, 1948, 187–204
  11. С. Хелгасон, Дифференциальная геометрия и симметрические пространства, Мир, М., 1964, 533 с.
  12. S. Helgason, “The Radon transform on Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds”, Acta Math., 113 (1965), 153–180
  13. Б. С. Кашин, В. Н. Темляков, “О наилучших $m$-членных приближениях и энтропии множеств в пространстве $L^1$”, Матем. заметки, 56:5 (1994), 57–86
  14. А. Н. Колмогоров, “О некоторых асимптотических характеристиках вполне ограниченных метрических пространств”, Докл. АН СССР, 108 (1956), 385–388
  15. А. К. Кушпель, “Оценки поперечников классов аналитических функций”, Укр. матем. журн., 41:4 (1989), 567–570
  16. А. К. Кушпель, “Оценки средних Леви и медиан некоторых распределений на сфере”, Ряды Фурье: теория и приложения (Каменец-Подольский, 1992), ИМ АН Украины, Киев, 1992, 49–53
  17. А. К. Кушпель, “Оценки бернштейновских поперечников и их аналогов”, Укр. матем. журн., 45:1 (1993), 54–59
  18. A. K. Kushpel, J. Levesley, K. Wilderotter, “On the asymptotically optimal rate of approximation of multiplier operators from $L_p$ into $L_q$”, Constr. Approx., 14:2 (1998), 169–185
  19. A. Kushpel, “Optimal cubature formulas on compact homogeneous manifolds”, J. Funct. Anal., 257:5 (2009), 1621–1629
  20. A. K. Kushpel, J. Levesley, S. A. Tozoni, “Estimates of $n$-widths of Besov classes on two-point homogeneous manifolds”, Math. Nachr., 282:5 (2009), 748–763
  21. A. Kushpel, S. A. Tozoni, “Entropy and widths of multiplier operators on two-point homogeneous spaces”, Constr. Approx., 35:2 (2012), 137–180
  22. A. Kushpel, R. L. B. Stabile, S. A. Tozoni, “Estimates for $n$-widths of sets of smooth functions on the torus $mathbb{T}^{d}$”, J. Approx. Theory, 183 (2014), 45–71
  23. А. К. Кушпель, “О константах Лебега”, Укр. матем. журн., 71:8 (2019), 1073–1081
  24. A. Kushpel, K. Taş, “The radii of sections of origin-symmetric convex bodies and their applications”, J. Complexity, 62 (2021), 101504, 21 pp.
  25. A. Kushpel, K. Taş, J. Levesley, “Widths and entropy of sets of smooth functions on compact homogeneous manifolds”, Turkish J. Math., 45:1 (2021), 167–184
  26. A. Kushpel, “The Lebesgue constants on projective spaces”, Turkish J. Math., 45:2 (2021), 856–863
  27. A. Kushpel, “Optimal recovery and volume estimates”, J. Complexity, 79 (2023), 101780, 15 pp.
  28. J. Lindenstrauss, L. Tzafriri, Classical Banach spaces, v. II, Ergeb. Math. Grenzgeb., 97, Function spaces, Springer-Verlag, Berlin–New York, 1979, x+243 pp.
  29. J. Marzo, J. Ortega-Cerdà, Uniformly bounded orthonormal polynomials on the sphere
  30. J. Marzo, J. Ortega-Cerdà, “Uniformly bounded orthonormal polynomials on the sphere”, Bull. Lond. Math. Soc., 47:5 (2015), 883–891
  31. J. Pisier, The volume of convex bodies and Banach space geometry, Cambridge Tracts in Math., 94, Cambridge Univ. Press, Cambridge, 1989, xiv+250 pp.
  32. Г. Сегe, Ортогональные многочлены, Физматгиз, М., 1962, 500 с.
  33. V. Temlyakov, “Entropy”, Multivariate approximation, Cambridge Monogr. Appl. Comput. Math., 32, Cambridge Univ. Press, Cambridge, 2018, 321–386 pp.
  34. H. Triebel, “Relations between approximation numbers and entropy numbers”, J. Approx. Theory, 78:1 (1994), 112–116
  35. Hsien-Chung Wang, “Two-point homogeneous spaces”, Ann. of Math. (2), 55 (1952), 177–191

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Kushpel' A.K.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).