On automorphisms of quasi-smooth weighted complete intersections

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We show that every reductive subgroup of the automorphism group of a quasi-smooth well-formed weighted complete intersection of dimension at least $3$ is a restriction of a subgroup in the automorphism group in the ambient weighted projective space. Also, we provide examples demonstrating that the automorphism group of a quasi-smooth well-formed Fano weighted complete intersection may be infinite and even non-reductive. Bibliography: 25 titles.

About the authors

Victor Vladimirovich Przyjalkowski

Steklov Mathematical Institute of Russian Academy of Sciences; International laboratory for Mirror Symmetry and Automorphic Forms, National Research University "Higher School of Economics" (HSE)

Email: victorprz@mi-ras.ru
Doctor of physico-mathematical sciences, no status

Constantin Aleksandrovich Shramov

Steklov Mathematical Institute of Russian Academy of Sciences; Laboratory of algebraic geometry and its applications, National Research University "Higher School of Economics" (HSE)

Email: costya.shramov@gmail.com
Doctor of physico-mathematical sciences, no status

References

  1. Э. Б. Винберг, А. Л. Онищик, Семинар по группам Ли и алгебраическим группам, 2-е изд., УРСС, М., 1995, 344 с.
  2. В. В. Пржиялковский, К. А. Шрамов, “Автоморфизмы взвешенных полных пересечений”, Алгебра, теория чисел и алгебраическая геометрия, Сборник статей. Посвящается памяти академика Игоря Ростиславовича Шафаревича, Тр. МИАН, 307, МИАН, М., 2019, 217–229
  3. В. В. Пржиялковский, К. А. Шрамов, “Взвешенные полные пересечения Фано большой коразмерности”, Сиб. матем. журн., 61:2 (2020), 377–384
  4. А. Н. Тюрин, “О пересечении квадрик”, УМН, 30:6(186) (1975), 51–99
  5. C. Ciliberto, R. Lazarsfeld, “On the uniqueness of certain linear series on some classes of curves”, Complete intersections (Acireale, 1983), Lecture Notes in Math., 1092, Springer, Berlin, 1984, 198–213
  6. A. Dimca, “Singularities and coverings of weighted complete intersections”, J. Reine Angew. Math., 1986:366 (1986), 184–193
  7. I. Dolgachev, “Weighted projective varieties”, Group actions and vector fields (Vancouver, BC, 1981), Lecture Notes in Math., 956, Berlin, Springer, 1982, 34–71
  8. D. Eisenbud, Commutative algebra. With a view toward algebraic geometry, Grad. Texts in Math., 150, Springer-Verlag, New York, 1995, xvi+785 pp.
  9. R. M. Fossum, The divisor class group of a Krull domain, Ergeb. Math. Grenzgeb., 74, Springer-Verlag, New York–Heidelberg, 1973, viii+148 pp.
  10. R. Hartshorne, “Complete intersections and connectedness”, Amer. J. Math., 84:3 (1962), 497–508
  11. R. Hartshorne, “Generalized divisors on Gorenstein curves and a theorem of Noether”, J. Math. Kyoto Univ., 26:3 (1986), 375–386
  12. A. R. Iano-Fletcher, “Working with weighted complete intersections”, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 101–173
  13. Y. Kawamata, “The cone of curves of algebraic varieties”, Ann. of Math. (2), 119:3 (1984), 603–633
  14. A. R. Mavlyutov, “Cohomology of complete intersections in toric varieties”, Pacific J. Math., 191:1 (1999), 133–144
  15. Y. Miyaoka, S. Mori, “A numerical criterion for uniruledness”, Ann. of Math. (2), 124:1 (1986), 65–69
  16. T. Okada, “Stable rationality of orbifold Fano 3-fold hypersurfaces”, J. Algebraic Geom., 28:1 (2019), 99–138
  17. M. Pizzato, T. Sano, L. Tasin, “Effective nonvanishing for Fano weighted complete intersections”, Algebra Number Theory, 11:10 (2017), 2369–2395
  18. Yu. Prokhorov, C. Shramov, “Jordan constant for Cremona group of rank 3”, Mosc. Math. J., 17:3 (2017), 457–509
  19. V. Przyjalkowski, C. Shramov, “Bounds for smooth Fano weighted complete intersections”, Commun. Number Theory Phys., 14:3 (2020), 511–553
  20. V. Przyjalkowski, C. Shramov, “Hodge level for weighted complete intersections”, Collect. Math., 71:3 (2020), 549–574
  21. L. Robbiano, “Some properties of complete intersections in “good” projective varieties”, Nagoya Math. J., 61 (1976), 103–111
  22. M. Rossi, L. Terracini, “Linear algebra and toric data of weighted projective spaces”, Rend. Semin. Mat. Univ. Politec. Torino, 70:4 (2012), 469–495
  23. K. Ueno, Classification theory of algebraic varieties and compact complex spaces, Notes written in collaboration with P. Cherenack, Lecture Notes in Math., 439, Springer-Verlag, Berlin–New York, 1975, xix+278 pp.
  24. K. Watanabe, “Some remarks concerning Demazure's construction of normal graded rings”, Nagoya Math. J., 83 (1981), 203–211
  25. Qi Zhang, “Rational connectedness of $log Q$-Fano varieties”, J. Reine Angew. Math., 2006:590 (2006), 131–142

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Пржиялковский В.V., Шрамов К.A.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».