Convergence criterion for quantum relative entropy and its use
- Authors: Shirokov M.E.1
-
Affiliations:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Issue: Vol 213, No 12 (2022)
- Pages: 137-174
- Section: Articles
- URL: https://ogarev-online.ru/0368-8666/article/view/133488
- DOI: https://doi.org/10.4213/sm9794
- ID: 133488
Cite item
Abstract
A criterion and necessary conditions for the convergence (local continuity) of quantum relative entropy are obtained. Some applications of these results are considered. In particular, the preservation of the local continuity of quantum relative entropy under completely positive linear maps is established.Bibliography: 29 titles.
About the authors
Maksim Evgenievich Shirokov
Steklov Mathematical Institute of Russian Academy of Sciences
Email: msh@mi-ras.ru
Doctor of physico-mathematical sciences, Head Scientist Researcher
References
- B. Schumacher, M. D. Westmoreland, “Relative entropy in quantum information theory”, Quantum computation and information (Washington, DC, 2000), Contemp. Math., 305, Amer. Math. Soc., Providence, RI, 2002, 265–289
- V. Vedral, “The role of relative entropy in quantum information theory”, Rev. Modern Phys., 74:1 (2002), 197–234
- A. Wehrl, “General properties of entropy”, Rev. Modern Phys., 50:2 (1978), 221–250
- M. Ohya, D. Petz, Quantum entropy and its use, Theoret. Math. Phys., Corr. 2nd pr., Springer-Verlag, Berlin, 2004, 357 pp.
- А. С. Холево, Квантовые системы, каналы, информация, МЦНМО, М., 2010, 328 с.
- M. M. Wilde, Quantum information theory, Cambridge Univ. Press, Cambridge, 2013, xvi+655 pp.
- G. Lindblad, “Expectations and entropy inequalities for finite quantum systems”, Comm. Math. Phys., 39:2 (1974), 111–119
- J. Naudts, “Continuity of a class of entropies and relative entropies”, Rev. Math. Phys., 16:6 (2004), 809–822
- M. E. Shirokov, “Convergence conditions for the quantum relative entropy and other applications of the deneralized quantum Dini lemma”, Lobachevskii J. Math., 43:7 (2022), 1755–1777
- B. Simon, Operator theory, Compr. Course Anal., 4, Amer. Math. Soc., Providence, RI, 2015, xviii+749 pp.
- L. Mirsky, “Symmetric gauge functions and unitarily invariant norms”, Quart. J. Math. Oxford Ser. (2), 11 (1960), 50–59
- М. А. Нильсен, И. Л. Чанг, Квантовые вычисления и квантовая информация, Мир, М., 2006, 824 с.
- У. Рудин, Основы математического анализа, 2-е изд., Мир, М., 1976, 319 с.
- H. Umegaki, “Conditional expectation in an operator algebra. IV. Entropy and information”, Kōdai Math. Sem. Rep., 14:2 (1962), 59–85
- У. Браттели, Д. Робинсон, Операторные алгебры и квантовая статистическая механика, Мир, М., 1982, 512 с.
- М. Рид, Б. Саймон, Методы современной математической физики, т. 1, Функциональный анализ, Мир, М., 1977, 357 с.
- М. Е. Широков, А. С. Холево, “Об аппроксимации бесконечномерных квантовых каналов”, Пробл. передачи информ., 44:2 (2008), 3–22
- M. E. Shirokov, “Strong convergence of quantum channels: continuity of the Stinespring dilation and discontinuity of the unitary dilation”, J. Math. Phys., 61:8 (2020), 082204, 14 pp.
- G. F. Dell'Antonio, “On the limits of sequences of normal states”, Comm. Pure Appl. Math., 20:2 (1967), 413–429
- M. E. Shirokov, “Strong* convergence of quantum channels”, Quantum Inf. Process., 20:4 (2021), 145, 16 pp.
- A. Winter, Energy-constrained diamond norm with applications to the uniform continuity of continuous variable channel capacities
- М. Е. Широков, “Энтропийные характеристики подмножеств состояний. I”, Изв. РАН. Сер. матем., 70:6 (2006), 193–222
- G. Lindblad, “Completely positive maps and entropy inequalities”, Comm. Math. Phys., 40:2 (1975), 147–151
- M. E. Shirokov, Continuity of characteristics of composite quantum systems: a review
- G. Lindblad, “Entropy, information and quantum measurements”, Comm. Math. Phys., 33 (1973), 305–322
- M. E. Shirokov, A. V. Bulinski, “On quantum channels and operations preserving finiteness of the von Neumann entropy”, Lobachevskii J. Math., 41:12 (2020), 2383–2396
- Н. И. Ахиезер, И. М. Глазман, Теория линейных операторов в гильбертовом пространстве, 2-е изд., Наука, М., 1966, 543 с.
- Man-Duen Choi, “Completely positive linear maps on complex matrices”, Linear Algebra Appl., 10:3 (1975), 285–290
- A. Jamiolkowski, “Linear transformations which preserve trace and positive semidefiniteness of operators”, Rep. Math. Phys., 3:4 (1972), 275–278
Supplementary files

