Realization of geodesic flows with a linear first integral by billiards with slipping
- Autores: Vedyushkina V.V.1, Zav'yalov V.N.1
-
Afiliações:
- Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
- Edição: Volume 213, Nº 12 (2022)
- Páginas: 31-52
- Seção: Articles
- URL: https://ogarev-online.ru/0368-8666/article/view/133482
- DOI: https://doi.org/10.4213/sm9772
- ID: 133482
Citar
Resumo
An arbitrary geodesic flow on the projective plane or Klein bottle with an additional, linear in the momentum, first integral is modelled using billiards with slipping on table complexes. The requisite table of a circular topological billiard with slipping is constructed algorithmically. Furthermore, linear integrals of geodesic flows can be reduced to the same canonical integral of a circular planar billiard. Bibliography: 36 titles.
Palavras-chave
Sobre autores
Viktoriya Vedyushkina
Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Email: arinir@yandex.ru
Doctor of physico-mathematical sciences
Vladimir Zav'yalov
Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Bibliografia
- А. В. Болсинов, А. Т. Фоменко, Интегрируемые гамильтоновы системы. Геометрия, топология, классификация, т. 1, 2, Изд. дом “Удмуртский университет”, Ижевск, 1999, 444 с., 447 с.
- В. В. Козлов, “Топологические препятствия к интегрируемости натуральных механических систем”, Докл. АН СССР, 249:6 (1979), 1299–1302
- В. В. Козлов, Симметрии, топология и резонансы в гамильтоновой механике, Изд-во Удмуртского ун-та, Ижевск, 1995, 429 с.
- А. В. Болсинов, В. С. Матвеев, А. Т. Фоменко, “Двумерные римановы метрики с интегрируемым геодезическим потоком. Локальная и глобальная геометрия”, Матем. сб., 189:10 (1998), 5–32
- В. Н. Колокольцов, “Геодезические потоки на двумерных многообразиях с дополнительным полиномиальным по скоростям первым интегралом”, Изв. АН СССР. Сер. матем., 46:5 (1982), 994–1010
- И. К. Бабенко, Н. Н. Нехорошев, “О комплексных структурах на двумерных торах, допускающих метрики с нетривиальным квадратичным интегралом”, Матем. заметки, 58:5 (1995), 643–652
- А. Т. Фоменко, В. В. Ведюшкина, “Бильярды и интегрируемость в геометрии и физике. Новый взгляд и новые возможности”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2019, № 3, 15–25
- A. T. Fomenko, V. V. Vedyushkina, V. N. Zav'yalov, “Liouville foliations of topological billiards with slipping”, Russ. J. Math. Phys., 28:1 (2021), 37–55
- В. В. Фокичева, “Топологическая классификация биллиардов в локально плоских областях, ограниченных дугами софокусных квадрик”, Матем. сб., 206:10 (2015), 127–176
- В. В. Ведюшкина, А. Т. Фоменко, И. С. Харчева, “Моделирование невырожденных бифуркаций замыканий решений интегрируемых систем с двумя степенями свободы интегрируемыми топологическими биллиардами”, Докл. РАН, 479:6 (2018), 607–610
- В. В. Фокичева (Ведюшкина), Топологическая классификация интегрируемых биллиардов, Дисс. … канд. физ.-матем. наук, МГУ, М., 2016, 130 с.
- С. Е. Пустовойтов, “Топологический анализ биллиарда, ограниченного софокусными квадриками, в потенциальном поле”, Матем. сб., 212:2 (2021), 81–105
- A. T. Fomenko, V. V. Vedyushkina, “Implementation of integrable systems by topological, geodesic billiards with potential and magnetic field”, Russ. J. Math. Phys., 26:3 (2019), 320–333
- Е. Е. Каргинова, “Биллиарды, ограниченные дугами софокусных квадрик на плоскости Минковского”, Матем. сб., 211:1 (2020), 3–31
- В. В. Ведюшкина, А. И. Скворцов, “Топология интегрируемого бильярда в эллипсе на плоскости Минковского с гуковским потенциалом”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2022, № 1, 8–19
- Г. В. Белозеров, “Топологическая классификация интегрируемых геодезических биллиардов на квадриках в трeхмерном евклидовом пространстве”, Матем. сб., 211:11 (2020), 3–40
- Г. В. Белозеров, “Топологическая классификация биллиардов в трехмерном евклидовом пространстве, ограниченных софокусными квадриками”, Матем. сб., 213:2 (2022), 3–36
- В. В. Ведюшкина, И. С. Харчева, “Биллиардные книжки моделируют все трехмерные бифуркации интегрируемых гамильтоновых систем”, Матем. сб., 209:12 (2018), 17–56
- В. В. Ведюшкина, Интегрируемые биллиарды на клеточных комплексах и интегрируемые гамильтоновы системы, Дисс. … докт. физ.-матем. наук, МГУ, М., 2020, 284 с.
- В. А. Кибкало, А. Т. Фоменко, И. С. Харчева, “Реализация интегрируемых гамильтоновых систем биллиардными книжками”, Тр. ММО, 82, № 1, МЦНМО, М., 2021, 45–78
- В. В. Ведюшкина, В. А. Кибкало, А. Т. Фоменко, “Топологическое моделирование интегрируемых систем биллиардами: реализация числовых инвариантов”, Докл. РАН. Матем., информ., проц. упр., 493 (2020), 9–12
- В. В. Ведюшкина, В. А. Кибкало, “Реализация бильярдами числового инварианта расслоения Зейферта интегрируемых систем”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2020, № 4, 22–28
- В. В. Ведюшкина, “Локальное моделирование бильярдами слоений Лиувилля: реализация реберных инвариантов”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2021, № 2, 28–32
- В. В. Ведюшкина, В. А. Кибкало, “Биллиардные книжки малой сложности и реализация слоений Лиувилля интегрируемых систем”, Чебышевский сб., 23:1 (2022), 53–82
- В. В. Ведюшкина, “Топологический тип изоэнергетических поверхностей биллиардных книжек”, Матем. сб., 212:12 (2021), 3–19
- С. В. Матвеев, А. Т. Фоменко, Алгоритмические и компьютерные методы в трехмерной топологии, Изд-во МГУ, М., 1991, 303 с.
- В. В. Ведюшкина (Фокичева), А. Т. Фоменко, “Интегрируемые геодезические потоки на ориентируемых двумерных поверхностях и топологические биллиарды”, Изв. РАН. Сер. матем., 83:6 (2019), 63–103
- В. В. Фокичева, А. Т. Фоменко, “Интегрируемые биллиарды моделируют важные интегрируемые случаи динамики твердого тела”, Докл. РАН, 465:2 (2015), 150–153
- В. В. Ведюшкина (Фокичева), А. Т. Фоменко, “Интегрируемые топологические биллиарды и эквивалентные динамические системы”, Изв. РАН. Сер. матем., 81:4 (2017), 20–67
- В. В. Ведюшкина, “Слоение Лиувилля бильярдной книжки, моделирующей случай Горячева–Чаплыгина”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2020, № 1, 64–68
- A. T. Fomenko, V. V. Vedyushkina, “Billiards with changing geometry and their connection with the implementation of the Zhukovsky and Kovalevskaya cases”, Russ. J. Math. Phys., 28:3 (2021), 317–332
- В. В. Ведюшкина, А. Т. Фоменко, “Эволюционные силовые биллиарды”, Изв. РАН. Сер. матем., 86:5 (2022), 116–156
- В. В. Ведюшкина, А. Т. Фоменко, “Силовые эволюционные биллиарды и биллиардная эквивалентность случая Эйлера и случая Лагранжа”, Докл. РАН. Матем., информ., проц. упр., 496 (2021), 5–9
- В. А. Кибкало, “Биллиарды с потенциалом моделируют ряд четырехмерных особенностей интегрируемых систем”, Современные проблемы математики и механики, Материалы международной конференции, посвященной 80-летию академика В. А. Садовничего, т. 2, МАКС Пресс, М., 2019, 563–566
- A. T. Fomenko, V. A. Kibkalo, “Saddle singularities in integrable Hamiltonian systems: examples and algorithms”, Contemporary approaches and methods in fundamental mathematics and mechanics, Underst. Complex Syst., Springer, Cham, 2021, 3–26
- В. В. Ведюшкина, В. А. Кибкало, С. Е. Пустовойтов, “Реализация фокусных особенностей интегрируемых систем биллиардными книжками с потенциалом Гука”, Чебышевский сб., 22:5 (2021), 44–57
Arquivos suplementares
