Time minimization problem on the group of motions of a plane with admissible control in a half-disc
- Authors: Mashtakov A.P.1
-
Affiliations:
- Ailamazyan Program Systems Institute of Russian Academy of Sciences
- Issue: Vol 213, No 4 (2022)
- Pages: 100-122
- Section: Articles
- URL: https://ogarev-online.ru/0368-8666/article/view/133440
- DOI: https://doi.org/10.4213/sm9609
- ID: 133440
Cite item
Abstract
The time minimization problem with admissible control in a half-disc is considered on the group of motions of a plane. The control system under study provides a model of a car on the plane that can move forwards or rotate in place. Optimal trajectories of such a system are used to detect salient curves in image analysis. In particular, in medical image analysis such trajectories are used for tracking vessels in retinal images. The problem is of independent interest in geometric control theory: it provides a model example when the set of values of the control parameters contains zero at the boundary. The problem of controllability and existence of optimal trajectories is studied. By analysing the Hamiltonian system of the Pontryagin maximum principle the explicit form of extremal controls and trajectories is found. Optimality of the extremals is partially investigated. The structure of the optimal synthesis is described. Bibliography: 33 titles.
About the authors
Alexey Pavlovich Mashtakov
Ailamazyan Program Systems Institute of Russian Academy of Sciences
Email: alexey.mashtakov@gmail.com
Candidate of technical sciences, Senior Researcher
References
- L. E. Dubins, “On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents”, Amer. J. Math., 79:3 (1957), 497–516
- J. A. Reeds, L. A. Shepp, “Optimal paths for a car that goes both forwards and backwards”, Pacific J. Math., 145:2 (1990), 367–393
- Y. L. Sachkov, “Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane”, ESAIM Control Optim. Calc. Var., 17:2 (2011), 293–321
- R. Duits, S. P. L. Meesters, J.-M. Mirebeau, J. M. Portegies, “Optimal paths for variants of the $2D$ and $3D$ Reeds–Shepp car with applications in image analysis”, J. Math. Imaging Vision, 60:6 (2018), 816–848
- J.-P. Laumond, “Feasible trajectories for mobile robots with kinematic and environment constraints”, Intelligent autonomous systems (Amsterdam, 1986), North-Holland Publishing Co., Amsterdam, 1987, 346–354
- R. Montgomery, A tour of subriemannian geometries, their geodesics and applications, Math. Surveys Monogr., 91, Amer. Math. Soc., Providence, RI, 2002, xx+259 pp.
- H. J. Sussmann, Guoqing Tang, Shortest paths for the Reeds–Shepp car: a worked out example of the use of geometric techniques in nonlinear optimal control, Report SYCON1-10, Rutgers Univ., 1991, 72 pp.
- В. Н. Берестовский, “Геодезические левоинвариантной неголономной римановой метрики на группе движений евклидовой плоскости”, Сиб. матем. журн., 35:6 (1994), 1223–1229
- G. Sanguinetti, E. Bekkers, R. Duits, M. H. J. Janssen, A. Mashtakov, J. M. Mirebeau, “Sub-Riemannian fast marching in $operatorname{SE}(2)$”, Progress in pattern recognition, image analysis, computer vision, and applications, Lecture Notes in Comput. Sci., 9423, Springer, Cham, 2015, 366–374
- E. J. Bekkers, R. Duits, A. Mashtakov, Y. Sachkov, “Vessel tracking via sub-Riemannian geodesics on the projective line bundle”, Geometric science of information, Lecture Notes in Comput. Sci., 10589, Springer, Cham, 2017, 773–781
- А. А. Аграчев, Ю. Л. Сачков, Геометрическая теория управления, Физматлит, М., 2005, 392 с.
- А. А. Ардентов, Л. В. Локуциевский, Ю. Л. Сачков, “Решение серии задач оптимального управления с 2-мерным управлением на основе выпуклой тригонометрии”, Докл. РАН. Мат. информ. проц. упр., 494:1 (2020), 86–92
- J. Petitot, “The neurogeometry of pinwheels as a sub-Riemannian contact structure”, J. Physiol. Paris, 97:2-3 (2003), 265–309
- G. Citti, A. Sarti, “A cortical based model of perceptual completion in the roto-translation space”, J. Math. Imaging Vision, 24:3 (2006), 307–326
- U. Boscain, R. A. Chertovskih, J. P. Gauthier, A. O. Remizov, “Hypoelliptic diffusion and human vision: a semidiscrete new twist”, SIAM J. Imaging Sci., 7:2 (2014), 669–695
- U. Boscain, J.-P. Gauthier, D. Prandi, A. Remizov, “Image reconstruction via non-isotropic diffusion in Dubins/Reed–Shepp-like control systems”, 53rd IEEE conference on decision and control (Los Angeles, CA, 2014), IEEE, 2014, 4278–4283
- A. P. Mashtakov, A. A. Ardentov, Yu. L. Sachkov, “Parallel algorithm and software for image inpainting via sub-Riemannian minimizers on the group of rototranslations”, Numer. Math. Theory Methods Appl., 6:1 (2013), 95–115
- B. Franceschiello, A. Mashtakov, G. Citti, A. Sarti, “Geometrical optical illusion via sub-Riemannian geodesics in the roto-translation group”, Differential Geom. Appl., 65 (2019), 55–77
- R. Duits, U. Boscain, F. Rossi, Y. Sachkov, “Association fields via cuspless sub-Riemannian geodesics in $operatorname{SE}(2)$”, J. Math. Imaging Vision, 49:2 (2014), 384–417
- U. Boscain, R. Duits, F. Rossi, Yu. Sachkov, “Curve cuspless reconstruction via sub-Riemannian geometry”, ESAIM Control Optim. Calc. Var., 20:3 (2014), 748–770
- D. J. Field, A. Hayes, R. F. Hess, “Contour integration by the human visual system: evidence for a local “association field””, Vision Res., 33:2 (1993), 173–193
- R. Duits, M. Felsberg, G. Granlund, B. Romeny, “Image analysis and reconstruction using a wavelet transform constructed from a reducible representation of the Euclidean motion group”, Int. J. Comput. Vis., 72:1 (2007), 79–102
- E. J. Bekkers, R. Duits, A. Mashtakov, G. R. Sanguinetti, “A PDE approach to data-driven sub-Riemannian geodesics in $operatorname{SE}(2)$”, SIAM J. Imaging Sci., 8:4 (2015), 2740–2770
- A. Mashtakov, R. Duits, Yu. Sachkov, E. J. Bekkers, I. Beschastnyi, “Tracking of lines in spherical images via sub-Riemannian geodesics in $operatorname{SO}(3)$”, J. Math. Imaging Vision, 58:2 (2017), 239–264
- R. Duits, A. Ghosh, T. C. J. Dela Haije, A. Mashtakov, “On sub-Riemannian geodesics in $operatorname{SE}(3)$ whose spatial projections do not have cusps”, J. Dyn. Control Syst., 22:4 (2016), 771–805
- W. L. J. Scharpach, Optimal paths for the Reeds–Shepp car with monotone spatial control and vessel tracking in medical image analysis, MSc. Thesis, Univ. of Technology, Eindhoven, 2018, 60 pp.
- М. И. Зеликин, Оптимальное управление и вариационное исчисление, 2-е изд., Едиториал УРСС, М., 2004, 160 с.
- A. Agrachev, D. Barilari, U. Boscain, A comprehensive introduction to sub-Riemannian geometry. From the Hamiltonian viewpoint, Cambridge Stud. Adv. Math., 181, Cambridge Univ. Press, Cambridge, 2020, xviii+745 pp.
- C. Laurent-Gengoux, A. Pichereau, P. Vanhaecke, Poisson structures, Grundlehren Math. Wiss., 347, Springer, Heidelberg, 2013, xxiv+461 pp.
- M. Lakshmanan, S. Rajasekar, Nonlinear dynamics. Integrability, chaos and patterns, Adv. Texts Phys., Springer-Verlag, Berlin, 2003, xx+619 pp.
- P. M. Mathews, M. Lakshmanan, “Dynamics of a nonlinear field”, Ann. Physics, 79:1 (1973), 171–185
- В. И. Арнольд, Обыкновенные дифференциальные уравнения, 4-е изд., РХД, Ижевск, 2000, 368 с.
- P. F. Byrd, M. D. Friedman, “Table of integrals of Jacobian elliptic functions”, Handbook of elliptic integrals for engineers and scientists, Grundlehren Math. Wiss., 67, Springer, Berlin–Heidelberg, 1971, 191–222
Supplementary files

