Обобщения пространства непрерывных функций; теоремы вложения
- Авторы: Гущин А.К.1
-
Учреждения:
- Математический институт им. В.А. Стеклова Российской академии наук
- Выпуск: Том 211, № 11 (2020)
- Страницы: 54-71
- Раздел: Статьи
- URL: https://ogarev-online.ru/0368-8666/article/view/133360
- DOI: https://doi.org/10.4213/sm9415
- ID: 133360
Цитировать
Аннотация
Ключевые слова
Об авторах
Анатолий Константинович Гущин
Математический институт им. В.А. Стеклова Российской академии наук
Email: akg@mi-ras.ru
доктор физико-математических наук, профессор
Список литературы
- А. К. Гущин, “О задаче Дирихле для эллиптического уравнения второго порядка”, Матем. сб., 137(179):1(9) (1988), 19–64
- С. Л. Соболев, “Об одной краевой задаче для полигармонического уравнения”, Матем. сб., 2(44):3 (1937), 465–499
- С. Л. Соболев, Некоторые применения функционального анализа в математической физике, Изд-во Ленингр. ун-та, Л., 1950, 255 с.
- В. П. Михайлов, Дифференциальные уравнения в частных производных, 2-е изд., Наука, М., 1983, 424 с.
- О. И. Богоявленский, В. С. Владимиров, И. В. Волович, А. К. Гущин, Ю. Н. Дрожжинов, В. В. Жаринов, В. П. Михайлов, “Краевые задачи математической физики”, Теоретическая и математическая физика, Сборник обзорных статей 3. К 50-летию института, Тр. МИАН СССР, 175, 1986, 63–102
- В. П. Михайлов, А. К. Гущин, “Дополнительные главы курса «Уравнения математической физики»”, Лекц. курсы НОЦ, 7, МИАН, М., 2007, 3–144
- В. П. Михайлов, “О задаче Дирихле для эллиптического уравнения второго порядка”, Дифференц. уравнения, 12:10 (1976), 1877–1891
- А. К. Гущин, В. П. Михайлов, “О граничных значениях решений эллиптических уравнений”, Обобщенные функции и их применения в математической физике (Москва, 1980), ВЦ АН СССР, М., 1981, 189–205
- А. К. Гущин, В. П. Михайлов, “О существовании граничных значений решений эллиптического уравнения”, Матем. сб., 182:6 (1991), 787–810
- В. Ж. Думанян, “О разрешимости задачи Дирихле для общего эллиптического уравнения второго порядка”, Матем. сб., 202:7 (2011), 75–94
- В. Ж. Думанян, “О разрешимости задачи Дирихле для эллиптического уравнения второго порядка”, ТМФ, 180:2 (2014), 189–205
- В. Ж. Думанян, “О разрешимости задачи Дирихле с граничной функцией из $L_2$ для эллиптического уравнения второго порядка”, Изв. НАН Армении. Матем., 50:4 (2015), 3–22
- А. К. Гущин, “О задаче Дирихле для эллиптического уравнения второго порядка с граничной функцией из $L_p$”, Матем. сб., 203:1 (2012), 3–30
- А. К. Гущин, “$L_p$-оценки некасательной максимальной функции для решения эллиптического уравнения второго порядка”, Матем. сб., 207:10 (2016), 28–55
- А. К. Гущин, “Интеграл площадей Лузина и некасательная максимальная функция для решений эллиптического уравнения второго порядка”, Матем. сб., 209:6 (2018), 47–64
- А. К. Гущин, “$L_p$-оценки решения задачи Дирихле для эллиптического уравнения второго порядка”, ТМФ, 174:2 (2013), 243–255
- А. К. Гущин, “О разрешимости задачи Дирихле для неоднородного эллиптического уравнения второго порядка”, Матем. сб., 206:10 (2015), 71–102
- Н. А. Гусев, “Об определениях граничных значений обобщенных решений уравнения эллиптического типа”, Комплексный анализ, математическая физика и приложения, Сборник статей, Тр. МИАН, 301, МАИК «Наука/Интерпериодика», М., 2018, 48–52
- Ф. Х. Мукминов, “Существование ренормализованного решения анизотропной параболической задачи с переменными показателями нелинейности”, Матем. сб., 209:5 (2018), 120–144
- Ф. Х. Мукминов, “Существование ренормализованного решения анизотропной параболической задачи для уравнения с диффузной мерой”, Математическая физика и приложения, Сборник статей. К 95-летию со дня рождения академика Василия Сергеевича Владимирова, Тр. МИАН, 306, МИАН, М., 2019, 192–209
- Ф. Х. Мукминов, “Единственность ренормализованного решения эллиптико-параболической задачи в анизотропных пространствах Соболева–Орлича”, Матем. сб., 208:8 (2017), 106–125
- Л. М. Кожевникова, “Энтропийные и ренормализованные решения анизотропных эллиптических уравнений с переменными показателями нелинейностей”, Матем. сб., 210:3 (2019), 131–161
- М. О. Катанаев, “Космологические модели с однородными и изотропными пространственными сечениями”, ТМФ, 191:2 (2017), 219–227
- М. О. Катанаев, “Действие Черна–Саймонса и дисклинации”, Комплексный анализ, математическая физика и приложения, Сборник статей, Тр. МИАН, 301, МАИК «Наука/Интерпериодика», М., 2018, 124–143
- М. О. Катанаев, “Описание дисклинаций и дислокаций с помощью действия Черна–Саймонса для $mathbb{SO}(3)$-связности”, Физика элементарных частиц и атомного ядра, 49:5 (2018), 1462–1470
- В. В. Жаринов, “Структуры Ли–Пуассона над дифференциальными алгебрами”, ТМФ, 192:3 (2017), 459–472
- В. В. Жаринов, “Анализ в алгебрах и модулях”, Комплексный анализ, математическая физика и приложения, Сборник статей, Тр. МИАН, 301, МАИК «Наука/Интерпериодика», М., 2018, 108–118
- В. В. Жаринов, “Анализ в некоммутативных алгебрах и модулях”, Математическая физика и приложения, Сборник статей. К 95-летию со дня рождения академика Василия Сергеевича Владимирова, Тр. МИАН, 306, МИАН, М., 2019, 100–111
- А. С. Трушечкин, “Нахождение стационарных решений уравнения Линдблада посредством исследования функционала производства энтропии”, Комплексный анализ, математическая физика и приложения, Сборник статей, Тр. МИАН, 301, МАИК «Наука/Интерпериодика», М., 2018, 276–286
- O. Frostman, “Potential d'equilibre et capacite des ensembles avec quelques applications à la theorie des fonctions”, Medd. Lunds Univ. Mat. Sem., 3 (1935), 1–118
- Л. Карлесон, Избранные проблемы теории исключительных множеств, Мир, М., 1971, 126 с.
- В. Г. Мазья, Пространства С. Л. Соболева, Изд-во Ленингр. ун-та, Л., 1985, 416 с.
- H. Federer, “The area of a nonparametric surface”, Proc. Amer. Math. Soc., 11:3 (1960), 436–439
Дополнительные файлы
