Some arithmetic properties of the values of entire functions of finite order and their first derivatives
- Authors: Yanchenko A.Y.1
-
Affiliations:
- National Research University "Moscow Power Engineering Institute"
- Issue: Vol 210, No 12 (2019)
- Pages: 136-150
- Section: Articles
- URL: https://ogarev-online.ru/0368-8666/article/view/133310
- DOI: https://doi.org/10.4213/sm9145
- ID: 133310
Cite item
Abstract
We describe a class of entire functions of finite order which, together with their first derivative, take sufficiently many algebraic values (with certain restrictions on the growth of the degree and height of these values). We show that, under certain conditions, any such function is a rational function of special form of an exponential. For entire functions of finite order which are not representable in the form of a finite linear combination of exponentials, we obtain an estimate for the number of points (in any fixed disc) at which the values of the function itself and its first derivative are algebraic numbers of bounded degree and height. Bibliography: 8 titles.
About the authors
Aleksandr Yakovlevich Yanchenko
National Research University "Moscow Power Engineering Institute"Candidate of physico-mathematical sciences, Associate professor
References
- G. Polya, “Ueber ganzwertige ganze Funktionen”, Rend. Circ. Mat. Palermo, 40 (1915), 1–16
- А. О. Гельфонд, Трансцендентные и алгебраические числа, Гостехиздат, М., 1952, 224 с.
- И. П. Рочев, “Обобщение теорем Гельфонда и Вальдшмидта о целозначных целых функциях”, Матем. сб., 202:8 (2011), 117–138
- M. Welter, “Sur un theorèm de Gel'fond–Selberg et une conjecture de Bundschuh–Shiokawa”, Acta Arith., 116:4 (2005), 363–385
- Б. Я. Левин, Распределение корней целых функций, ГИТТЛ, М., 1956, 632 с.
- Н. И. Фельдман, “О совместных приближениях периодов эллиптической функции алгебраическими числами”, Изв. АН СССР. Сер. матем., 22:4 (1958), 563–576
- Н. И. Фельдман, “Оценка линейной формы от логарифмов алгебраических чисел”, Матем. сб., 76(118):2 (1968), 304–319
- В. Г. Спринджук, Классические диофантовы уравнения от двух переменных, Наука, М., 1982, 288 с.
Supplementary files

