Higher colimits, derived functors and homology

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We develop a theory of higher colimits over categories of free presentations. We show that different homology functors such as Hochschild and cyclic homology of algebras over a field of characteristic zero, simplicial derived functors, and group homology can be obtained as higher colimits of simply defined functors. Connes' exact sequence linking Hochschild and cyclic homology was obtained using this approach as a corollary of a simple short exact sequence. As an application of the developed theory, we show that the third reduced $K$-functor can be defined as the colimit of the second reduced $K$-functor applied to the fibre square of a free presentation of an algebra. We also prove a Hopf-type formula for odd-dimensional cyclic homology of an algebra over a field of characteristic zero. Bibliography: 17 titles.

About the authors

Sergei Olegovich Ivanov

Laboratory of Modern Algebra and Applications, St. Petersburg State University

Email: ivanov.s.o.1986@gmail.com
Candidate of physico-mathematical sciences, no status

Roman Valerevich Mikhailov

Laboratory of Modern Algebra and Applications, St. Petersburg State University; St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences

Doctor of physico-mathematical sciences, Head Scientist Researcher

Vladimir Aleksandrovich Sosnilo

Laboratory of Modern Algebra and Applications, St. Petersburg State University

References

  1. А. Картан, С. Эйленберг, Гомологическая алгебра, ИЛ, М., 1960, 510 с.
  2. П. Габриель, М. Цисман, Категории частных и теория гомотопий, Мир, М., 1971, 295 с.
  3. S. M. Gersten, “$K_3$ of a ring is $H_3$ of the Steinberg group”, Proc. Amer. Math. Soc, 37:2 (1973), 366–368
  4. S. M. Gersten, “K-theory of free rings”, Comm. Algebra, 1 (1974), 39–64
  5. G. Donadze, N. Inassaridze, M. Ladra, “Cyclic homology via derived functors”, Homology Homotopy Appl., 12:2 (2010), 321–334
  6. S. O. Ivanov, R. Mikhailov, “A higher limit approach to homology theories”, J. Pure Appl. Algebra, 219:6 (2015), 1915–1939
  7. F. Keune, “The relativization of $K_2$”, J. Algebra, 54:1 (1978), 159–177
  8. J.-L. Loday, Cyclic homology, Grundlehren Math. Wiss., 301, Springer-Verlag, Berlin, 1992, xviii+454 pp.
  9. J. Lurie, Higher topos theory, Ann. of Math. Stud., 170, Princeton Univ. Press, Princeton, NJ, 2009, xviii+925 pp.
  10. S. Mac Lane, Categories for the working mathematician, Grad. Texts in Math., 5, Springer-Verlag, New York–Berlin, 1971, ix+262 pp.
  11. B. A. Magurn, An algebraic introduction to $K$-theory, Encyclopedia Math. Appl., 87, Cambridge Univ. Press, Cambridge, 2002, xiv+676 pp.
  12. R. Mikhailov, I. B. S. Passi, “Generalized dimension subgroups and derived functors”, J. Pure Appl. Algebra, 220:6 (2016), 2143–2163
  13. R. Mikhailov, I. B. S. Passi, “Dimension quotients, Fox subgroups and limits of functors”, Forum Math., 31:2 (2019), 385–401
  14. D. G. Quillen, Homotopical algebra, Lecture Notes in Math., 43, Springer-Verlag, Berlin–New York, 1967, iv+156 pp.
  15. D. Quillen, “Higher algebraic K-theory. I”, Algebraic K-theory (Battelle Memorial Inst., Seattle, WA, 1972), v. I, Springer Lect. Notes Math., 341, Higher K-theories, Springer, Berlin, 1973, 85–147
  16. D. Quillen, “Cyclic cohomology and algebra extensions”, K-Theory, 3:3 (1989), 205–246
  17. C. A. Weibel, An introduction to homological algebra, Cambridge Stud. Adv. Math., 38, Cambridge Univ. Press, Cambridge, 1994, xiv+450 pp.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Ivanov S.O., Mikhailov R.V., Sosnilo V.A.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).