Detector optimization based on artificial neural network training

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We apply artificial neural networks for event-wise analysis of model data for a microchannel plate detector. Based on this data, we estimate an impact parameter, and the collision point coordinates for each event. We have performed the analysis based on several Monte-Carlo collision models. Even though the quality of the existing models is not sufficient for a reliable, model-independent estimation of the collision parameters, the proposed method of parameter reconstruction allows us to estimate the optimal technical characteristics of the detector.

About the authors

V. A. Roudnev

St. Petersburg State University

St. Petersburg, Russia

K. A. Galaktionov

St. Petersburg State University

Email: st067889@student.spbu.ru
St. Petersburg, Russia

F. F. Valiev

St. Petersburg State University

St. Petersburg, Russia

References

  1. Fupeng Li, Yongjia Wang, Zepeng Gao et al. // Phys. Rev. C. 2021. V. 104. No. 3. Art. No. 034608.
  2. Galaktionov K.A., Roudnev V.A., Valiev F.F. // Moscow Univ. Phys. Bull. 2023. V. 78. P. S52.
  3. Galaktionov K.A., Roudnev V.A., Valiev F.F. // Phys. Atom. Nucl. 2023. V. 86. No. 6. P. 1080.
  4. Galaktionov K.A., Roudnev V.A., Valiev F.F. // Phys. Part. Nucl. 2023. V. 54. P. 446.
  5. Baldin A.A., Feofilov G.A., Har’yuzov P., Valiev F.F. // Nucl. Instrum. Meth. Phys. Res. A. 2020. V. 958. Art. No. 162154.
  6. https://nica.jinr.ru/ru
  7. Vlasnikov A.K., Zherebchevsky V.I., Lazareva T.V. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 5. P. 469.
  8. Kolesnikov V.I., Zinchenko A.I., Vasendina V.A. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 4. P. 451.
  9. Zherebchevsky V.I., Maltsev N.A., Nesterov D.G. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 8. P. 948.
  10. Amelin N.S., Gudima K.K., Toneev V.D. // Sov. J. Nucl. Phys. 1990. V. 51. No. 6. P. 1730.
  11. Werner K., Liu F-M., Pierog T. // Phys. Rev. C. 2006. V. 74. No. 4. Art. No. 044902.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).