Development and validation of methods for the quantitative determination of dihydroquercetin-glycine lyophilizate components
- Authors: Pankov D.I.1, Sukhova E.M.1, Terekhov R.P.1, Zhevlakova A.K.1, Selivanova I.A.1
-
Affiliations:
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health f the Russian Federation (Sechenov University)
- Issue: Vol 74, No 8 (2025)
- Pages: 40-51
- Section: Pharmaceutical chemistry and pharmacognosy
- URL: https://ogarev-online.ru/0367-3014/article/view/365718
- DOI: https://doi.org/10.29296/25419218-2025-08-05
- EDN: https://elibrary.ru/jfvzyt
- ID: 365718
Cite item
Abstract
Introduction. Herbal preparations occupy an important part in medical practice along with synthetic drugs. Flavonoids are the main group of biologically active substances in many of plant medicinal products. Flavonoids are generally slightly soluble in water. To overcome the low solubility, attempts are being made to obtain cocrystalline and coamorphic forms of flavonoids, for example, with amino acids. A neuroprotective effect has been established for both flavanonol dihydroquercetin and the amino acid glycine, which served as a starting point for obtaining a solid-phase product based on them by freeze drying.
The purpose of this work is to develop and validate methods for the identification and quantification of the two active ingredients of the dihydroquercetin-glycine composition.
Material and methods. Glycine was determined spectrophotometrically after reaction with ninhydrin. Dihydroquercetin analysis was performed using the HPLC-UV method on phenyl silica gel. The following validation characteristics were evaluated: accuracy, precision, specificity, linearity, and analytical range.
Results. The linear dependence of the optical density of Ruhemann's purple on the concentration of glycine is observed in the range of 0.1–0.5 mg/mL and obeys the equation A=5.1237C − 0.5553 (r=0.9968). The relative standard deviations of absorption according to the results of 3 determinations for concentrations of 80, 100, and 120% glycine are 3.2, 1.9, and 1.3%, respectively. The linear dependence of the area of the dihydroquercetin peak on its concentration is observed in the range of 10–200 μg/mL and obeys the equation S=121.518C – 47.935 (r=0.9998). The relative standard deviations of the peak area of the base substance according to the results of 3 determinations for concentrations of 10, 50, and 200 μg/mL of dihydroquercetin are 2.8, 3.9, and 1.2%, respectively.
Conclusion. The validated methods are suitable for pharmaceutical analysis and can be used in quality control of the composition, which is being developed as the basis of the dosage form “Lyophilizate for solution preparation for infusion”.
About the authors
Denis Igorevich Pankov
I.M. Sechenov First Moscow State Medical University of the Ministry of Health f the Russian Federation (Sechenov University)
Author for correspondence.
Email: pankov_d_i@staff.sechenov.ru
ORCID iD: 0009-0007-6195-6400
Postgraduate Student, Assistant of the Chemistry Department, A.P. Nelyubin Institute of Pharmacy
Russian Federation, Trubetskaya str., 8/2, Mosсow, 119048Evgeniya Maksimovna Sukhova
I.M. Sechenov First Moscow State Medical University of the Ministry of Health f the Russian Federation (Sechenov University)
Email: sukhova_e_m@student.sechenov.ru
ORCID iD: 0009-0005-7038-7081
4th year student, A.P. Nelyubin Institute of Pharmacy
Russian Federation, Trubetskaya str., 8/2, Mosсow, 119048Roman Petrovich Terekhov
I.M. Sechenov First Moscow State Medical University of the Ministry of Health f the Russian Federation (Sechenov University)
Email: terekhov_r_p@staff.sechenov.ru
ORCID iD: 0000-0001-9206-8632
Candidate of Pharmaceutical Sciences, Associate Professor, Department of Chemistry A.P. Nelyubin Institute of Pharmacy
Russian Federation, Trubetskaya str., 8/2, Mosсow, 119048Anastasiya Konstantinovna Zhevlakova
I.M. Sechenov First Moscow State Medical University of the Ministry of Health f the Russian Federation (Sechenov University)
Email: zhevlakova_a_k@staff.sechenov.ru
ORCID iD: 0000-0002-2945-9806
Senior Lecturer, Department of Chemistry of A.P. Nelyubin Institute of Pharmacy
Russian Federation, Trubetskaya str., 8/2, Mosсow, 119048Irina Anatolyevna Selivanova
I.M. Sechenov First Moscow State Medical University of the Ministry of Health f the Russian Federation (Sechenov University)
Email: selivanova_i_a@staff.sechenov.ru
ORCID iD: 0000-0002-2244-445X
Doctor of Pharmaceutical Sciences, Professor in the Department of Organic Chemistry, Professor of the Department of Chemistry, Nelyubin Institute of Pharmacy
Russian Federation, Trubetskaya str., 8/2, Mosсow, 119048References
- Самылина И.А., Потанина О.Г. Фармакогнозия: пути создания лекарственных растительных препаратов. Фармация. 2025; 74 (4): 5–14. doi: 10.29296/25419218-2025-04-01 [Samylina I.A., Potanina O.G. Pharmacognosy: ways of creating herbal medicines. Pharmacy. 2025; 74 (4): 5–14. doi: 10.29296/25419218-2025-04-01 (in Russian)]
- Makadia J., Seaton C.C., Li M. Apigenin cocrystals: From computational prescreening to physicochemical property characterization. Cryst Growth Des. 2023; 23 (5): 3480–95. doi: 10.1021/acs.cgd.3c00030
- Garbiec E., Rosiak N., Zalewski P., Tajber L., Cielecka-Piontek J. Genistein co-amorphous systems with amino acids: An investigation into enhanced solubility and biological activity. Pharmaceutics. 2023; 15 (12): 2653. doi: 10.3390/pharmaceutics15122653
- Mishra M., Agrawal S., Bahadur P., Tiwari S. Effect of stoichiometry upon the characteristics of quercetin-arginine cocrystals formulated through solution crystallization. Drug Dev Ind Pharm. 2024; 50 (2): 163–72. doi: 10.1080/03639045.2024.2306281
- Elshaer M., Osman S.k., Mohammed A.M., Zayed G. Co-crystallization of hesperidin with different co-formers to enhance solubility, antioxidant and anti-inflammatory activities. Pharm Dev Technol. 2024; 29 (7): 691–702. doi: 10.1080/10837450.2024.2378498
- Панков Д.И., Терехов Р.П., Рахимов А.А., Дзубан А.В., Утенышев А.Н., Шилов Г.В., Селиванова И.А. Твердофазный продукт на основе дигидрокверцетина и глицина: получение и физико-химические свойства. Фармация, 2025; 74 (5): 12–20. doi: 10.29296/25419218-2025-05-02 [Pankov D.I., Тerekhov R.P., Rakhimov A.A., Dzuban A.V., Utenyshev A.N., Shilov G.V., Selivanova I.А. Solid-phase product based on dihydroquercetin and glycine: preparation and physico-chemical properties. Pharmacy. 2025; 74 (5): 12–20. doi: 10.29296/25419218-2025-04-01 (in Russian)]
- Liu M., Hong C., Yao Y., Shen H., Ji G., Li G., Xie Y. Development of a pharmaceutical cocrystal with solution crystallization technology: Preparation, characterization, and evaluation of myricetin-proline cocrystals. Eur. J. Pharm. Biopharm. 2016; 107: 151–9. doi: 10.1016/j.ejpb.2016.07.008
- Cui W., He Z., Zhang Y., Fan Q., Feng N. Naringenin cocrystals prepared by solution crystallization method for improving bioavailability and anti-hyperlipidemia effects. AAPS PharmSciTech. 2019; 20 (3): 115. doi: 10.1208/s12249-019-1324-0
- Терехов Р.П., Савина А.Д., Панков Д.И., Никитин И.Д., Селиванова И.А. Современные подходы к анализу стереоизомерного состава дигидрокверцетина. Фармация. 2024. 73 (2): 5–12. doi: 10.29296/25419218-2024-02-01 [Тerekhov R.P., Savina А.D., Pankov D.I., Nikitin I.D., Selivanova I.А. The modern approaches of analysis of dihydroquercetin stereoisomeric composition. Pharmacy. 2024. 73 (2): 5–12. doi: 10.29296/25419218-2024-02-01 (in Russian)]
- Bocian S., Buszewski B. Phenyl-bonded stationary phases – The influence of polar functional groups on retention and selectivity in reversed-phase liquid chromatography. J. Sep. Sci. 2014. 37 (23): 3435–42. doi: 10.1002/jssc.201400764
- Ruhemann S. Cyclic di- and tri-ketones. Journal of the Chemical Society, Transactions. 1910. 97: 1438–49. doi: 10.1039/CT9109701438
- McCaldin D.J. The chemistry of ninhydrin. Chem Rev. 1960. 60 (1): 39–51. doi: 10.1021/cr60203a004
- Fitzpatrick W.H. Spectrophotometric determination of amino acids by the ninhydrin reaction. Science. 1949; 109 (2836): 469. doi: 10.1126/science.109.2836.469
- Moore S. Amino acid analysis: aqueous dimethyl sulfoxide as solvent for the ninhydrin reaction. J. Biol. Chem. 1968; 243 (23): 6281–3. doi: 10.1016/S0021-9258(18)94488-1
- Lamothe P.J., McCormick P.G. Influence of acidity on the reaction of ninhydrin with amino acids. Anal Chem. 1972; 44 (4): 821–5. doi: 10.1021/ac60312a003
- Stauß A.C., Fuchs C., Jansen P., Repert S., Alcock K., Ludewig S., Rozhon W. The ninhydrin reaction revisited: optimisation and application for quantification of free amino acids. Molecules. 2024; 29 (14): 3262. doi: 10.3390/molecules29143262
- Государственная фармакопея Российской Федерации XV издания, ОФС.1.1.0012 «Валидация аналитических методик». [State Pharmacopoeia of the Russian Federation, 15th edition, OFS.1.1.0012 “Validation of analytical methods” (in Russian)]
- Руководство по валидации аналитических методик проведения испытаний лекарственных средств, утверждено Решением Коллегии Евразийской экономической комиссии № 113 от 17.07.2018. [Guidelines for the validation of analytical methods for testing medicinal products, approved by Decision of the Board of the Eurasian Economic Commission No. 113 of July 17, 2018 (in Russian)].
- Эпштейн Н.А. Валидация аналитических методик: графические и расчетные критерии для оценки линейности методик на практике. Разработка и регистрация лекарственных средств. 2019; 8 (2): 122–30. doi: 10.33380/2305-2066-2019-8-2-122-130 [Epshtein N.A. Validation of analytical procedures: graphic and calculated criteria for assessment of methods linearity in practice. Drug development & registration. 2019; 8 (2): 122–30. doi: 10.33380/2305-2066-2019-8-2-122-130 (in Russian)]
- Horwitz W., Kamps L.R., Boyer K.W. Quality assurance in the analysis of foods for trace constituents. J Assoc Off Anal Chem. 1980; 63: 1344–54. doi: 10.1093/jaoac/63.6.1344
- Horwitz W., Albert R. The Horwitz Ratio (HorRat): A useful index of method performance with respect to precision. J AOAC Int. 2006. 89(4): 1095–109. doi: 10.1093/jaoac/89.4.1095
Supplementary files
