Suppression of IL-5 and IL-13 gene expression by synthetic siRNA molecules reduces nasal hyperreactivity and inflammation in a mouse model of allergic rhinitis.
- 作者: Kaganova M.M.1, Shilovskiy I.P.1, Kovchina V.I.1, Timotievich E.D.1, Rusak T.E.1, Nikolskii A.A.1, Yumashev K.V.1, Pasikhov G.B.1, Vinogradova K.V.1,2, Gurskii D.A.1,2, Popova M.V.1,3, Brylina V.E.2, Khaitov M.R.1,3
-
隶属关系:
- Institute of Immunology of the Federal Medical-Biological Agency, National Research Center
- MVA named after K. I. Skryabin of the Ministry of Agriculture of the Russian Federation, Moscow State Academy of Veterinary Medicine and Biotechnology
- Pirogov Russian National Research Medical University Ministry of Health of the Russian Federation
- 期: 卷 90, 编号 4 (2025)
- 页面: 531-549
- 栏目: Articles
- URL: https://ogarev-online.ru/0320-9725/article/view/312337
- DOI: https://doi.org/10.31857/S0320972525040039
- EDN: https://elibrary.ru/ihukfb
- ID: 312337
如何引用文章
详细
关键词
作者简介
M. Kaganova
Institute of Immunology of the Federal Medical-Biological Agency, National Research Center
Email: mariya.kaganova.99@mail.ru
115522 Moscow, Russia
I. Shilovskiy
Institute of Immunology of the Federal Medical-Biological Agency, National Research Center115522 Moscow, Russia
V. Kovchina
Institute of Immunology of the Federal Medical-Biological Agency, National Research Center115522 Moscow, Russia
E. Timotievich
Institute of Immunology of the Federal Medical-Biological Agency, National Research Center115522 Moscow, Russia
T. Rusak
Institute of Immunology of the Federal Medical-Biological Agency, National Research Center115522 Moscow, Russia
A. Nikolskii
Institute of Immunology of the Federal Medical-Biological Agency, National Research Center115522 Moscow, Russia
K. Yumashev
Institute of Immunology of the Federal Medical-Biological Agency, National Research Center115522 Moscow, Russia
G. Pasikhov
Institute of Immunology of the Federal Medical-Biological Agency, National Research Center115522 Moscow, Russia
K. Vinogradova
Institute of Immunology of the Federal Medical-Biological Agency, National Research Center; MVA named after K. I. Skryabin of the Ministry of Agriculture of the Russian Federation, Moscow State Academy of Veterinary Medicine and Biotechnology115522 Moscow, Russia; 109472 Moscow, Russia
D. Gurskii
Institute of Immunology of the Federal Medical-Biological Agency, National Research Center; MVA named after K. I. Skryabin of the Ministry of Agriculture of the Russian Federation, Moscow State Academy of Veterinary Medicine and Biotechnology115522 Moscow, Russia; 109472 Moscow, Russia
M. Popova
Institute of Immunology of the Federal Medical-Biological Agency, National Research Center; Pirogov Russian National Research Medical University Ministry of Health of the Russian Federation115522 Moscow, Russia; 117997 Moscow, Russia
V. Brylina
MVA named after K. I. Skryabin of the Ministry of Agriculture of the Russian Federation, Moscow State Academy of Veterinary Medicine and Biotechnology109472 Moscow, Russia
M. Khaitov
Institute of Immunology of the Federal Medical-Biological Agency, National Research Center; Pirogov Russian National Research Medical University Ministry of Health of the Russian Federation115522 Moscow, Russia; 117997 Moscow, Russia
参考
- Astafieva, N. G., Baranov, A. A., Vishneva, E. A., Daikhes, N. A., Zhestkov, A. V., Ilyina, N. I., Karneeva, O. V., Karpova, E. P., Kim, I. A., Kryukov, A. I., Kurbacheva, O. M., Meshkova, R. Ya., Namazova-Baranova, L. S., Nenasheva, N. M., Novik, G., Nosulya, E. V., Pavlova, K., Pampura, A., Svistushkin, V. M., Selimzyanova, L.R., Khaitov, M. R., and Khaitov, R. M. (2020) Allergic rhinitis,Russ. Rhinol.,28, 246-256,https://doi.org/10.17116/ROSRINO202028041246.
- Yoo, E. R. (2015) Global atlas of allergic rhinitis and chronic rhinosinusitis,European Academy of Allergy and Clinical Immunology, 1-442.
- Bousquet, J., Anto, J. M., Bachert, C., Baiardini, I., Bosnic-Anticevich, S., Canonica, W. G., Melén, E., Palomares, O., Scadding, G. K., Togias, A., and Toppila-Salmi, S. (2020) Allergic rhinitis,Nat. Rev. Dis. Primers,6, 95,https://doi.org/10.1038/S41572-020-00227-0.
- Козулина И. Е., Курбачева О. М., Ильина Н. И. (2014) Аллергия сегодня. Анализ новых эпидемиологических данных,Росс. Аллергол. Журн.,3, 3-10.
- Kucuksezer, U. C., Ozdemir, C., Cevhertas, L., Ogulur, I., Akdis, M., and Akdis, C. A. (2020) Mechanisms of allergen-specific immunotherapy and allergen tolerance,Allergol. Int.,69, 549-560,https://doi.org/10.1016/j.alit. 2020.08.002.
- Bush, A. (2019) Pathophysiological mechanisms of asthma,Front. Pediatr.,7, 446532,https://doi.org/10.3389/FPED.2019.00068.
- Meng, Y., Wang, C., and Zhang, L. (2019) Recent developments and highlights in allergic rhinitis,Allergy,74, 2320-2328,https://doi.org/10.1111/ALL.14067.
- Shilovskiy, I. P., Eroshkina, D. V., Babakhin, A. A., and Khaitov, M. R. (2017) Anticytokine therapy of allergic asthma,Mol. Biol.,51, 1-13.
- Shilovskiy, I. P., Kovchina, V. I., Timotievich, E. D., Nikolskii, A. A., and Khaitov, M. R. (2023) Role and molecular mechanisms of alternative splicing of Th2-cytokines IL-4 and IL-5 in atopic bronchial asthma,Biochemistry (Moscow),88, 1608-1621,https://doi.org/10.1134/S0006297923100152.
- Komlósi, Z. I., van de Veen, W., Kovács, N., Szűcs, G., Sokolowska, M., O’Mahony, L., Mübeccel, A., and Akdis, C. A. (2022) Cellular and molecular mechanisms of allergic asthma,Mol. Asp. Med.,85, 100995,https://doi.org/ 10.1016/j.mam.2021.100995.
- Habib, N., Pasha, M. A., and Tang, D. D. (2022) Current understanding of asthma pathogenesis and biomarkers,Cells,11, 2764,https://doi.org/10.3390/cells11172764.
- Gans, M. D., and Gavrilova, T. (2020) Understanding the immunology of asthma: Pathophysiology, biomarkers, and treatments for asthma endotypes,Paediatr. Respirat. Rev.,36, 118-127,https://doi.org/10.1016/j.prrv. 2019.08.002.
- Harb, H., and Chatila, T. A. (2020) Mechanisms of dupilumab,Clin. Exp. Allergy,50, 5-14,https://doi.org/10.1111/cea.13491
- Keating, G. M. (2015) Mepolizumab: first global approval,Drugs,75, 2163-2169,https://doi.org/10.1007/s40265-015-0513-8.
- Menzella, F., Ruggiero, P., Ghidoni, G., Fontana, M., Bagnasco, D., Livrieri, F., Scelfo, C., and Facciolongo, N. (2020) Anti-il5 therapies for severe eosinophilic asthma: literature review and practical insights,J. Asthma Allergy,13, 301-313,https://doi.org/10.2147/JAA.S258594.
- Tohda, Y., Matsumoto, H., Miyata, M., Taguchi, Y., Ueyama, M., Joulain, F., and Arakawa, I. (2022) Cost-effectiveness analysis of dupilumab among patients with oral corticosteroid-dependent uncontrolled severe asthma in Japan,J. Asthma,59, 2162-2173,https://doi.org/10.1080/02770903.2021.1996596.
- Wilson, R. C., and Doudna, J. A. (2013) Molecular mechanisms of RNA interference,Annu. Rev. Biophys.,42, 217-239,https://doi.org/10.1146/annurev-biophys-083012-130404.
- Lu, Z. J., and Mathews, D. H. (2008) OligoWalk: an online siRNA design tool utilizing hybridization thermodynamics,Nucleic Acids Res.,36, W104-W108,https://doi.org/10.1093/nar/gkn250.
- Shilovskiy, I. P., Sundukova, M. S., Korneev A. V., Nikolskii, A. A., Barvinskaya, E. D., Kovchina, V. I.,Vishniakova, L. I., Turenko, V. N., Yumashev, K. V., Kaganova, M. M., Brylina, V. E., Sergeev, I., Maerle, A., Kudlay, D. A.,Petukhova, O., and Khaitov, M. R. (2022) The mixture of siRNAs targeted to IL-4 and IL-13 genes effectively reduces the airway hyperreactivity and allergic inflammation in a mouse model of asthma,Int. Immunopharmacol.,103, 108432,https://doi.org/10.1016/j.intimp.2021.
- Kozhikhova, K. V., Andreev, S. M., Shilovskiy, I. P., Timofeeva, A. V., Gaisina, A. R., Shatilov, A. A., Turetskiy, E.A., Andreev, I. M., Smirnov, V. V., Dvornikov, A. S., and Khaitov, M. R. (2018) A novel peptide dendrimer LTP efficiently facilitates transfection of mammalian cells,Org. Biomol. Chem.,16, 8181-8190,https://doi.org/ 10.1039/c8ob02039f.
- Conrad, M. L., Yildirim, A. Ö., Sonar, S. S., Kiliç, A., Sudowe, S., Lunow, M., Teich, R., Renz, H., and Garn, H. (2009) Comparison of adjuvant and adjuvant-free murine experimental asthma models,Clin. Exp. Allergy,39, 1246-1254,https://doi.org/10.1111/j.1365-2222.2009.03260.x.
- Shilovskiy, I. P., Barvinskaia, E. D., Kaganova, M. M., Kovchina, V. I., Yumashev, K. V., Korneev, A. V., Nikolskii, A. A., Vishnyakova, L. I., Brylina, V.E., Rusak, T. E., Kurbachova, O. M., Dyneva, M. E., Petukhova, O. A., Gudima, G.O., Kudlay, D. A., and Khaitov, M. R. (2022) A mouse model of allergic rhinitis mimicking human pathology,Immunologiya,43, 654-672,https://doi.org/10.33029/0206-4952-2022-43-6-654-672.
- Köse, Ş., Tatlı Kış, T., Diniz, G., Akbulut, İ., Serin, B. G., Yılmaz, C., Özyazıcı, M., Arıcı, M., Yurdasiper, A., and Yılmaz, O. (2021) A new experimental allergic rhinitis model in mice,İzmir Dr. Behçet Uz Çocuk Hast. Dergisi,11, 233-239,https://doi.org/10.5222/buchd.2021.86658.
- Gatta A. K., Hariharapura R. C., Udupa N., Reddy M. S., and Josyula V. R. (2018) Strategies for improving the specificity of siRNAs for enhanced therapeutic potential,Exp. Opin. Drug Discov.,13, 709-725,https://doi.org/ 10.1080/17460441.2018.1480607.
- Zhang, Y., Lan, F., and Zhang, L. (2022) Update on pathomechanisms and treatments in allergic rhinitis,Allergy,77, 3309-3319,https://doi.org/10.1111/all.15454.
- Saito, H., Matsumoto, K., Denburg, A. E., Crawford, L., Ellis, R., Inman, M. D., Sehmi, R., Takatsu, K., Matthaei, K. I., and Denburg, J. A. (2002) Pathogenesis of murine experimental allergic rhinitis: a study of local and systemic consequences of IL-5 deficiency,J. Immunol.,168, 3017-3023,https://doi.org/10.4049/jimmunol.168.6.3017.
- Cho, J. Y., Miller, M., Baek, K. J., Han, J. W., Nayar, J., Lee, S. Y., McElwain, S., Friedman, S., and Broide, D. H. (2004) Inhibition of airway remodeling in IL-5-deficient mice,J. Clin. Invest.,113, 551-560,https://doi.org/10.1172/jci200419133.
- Hamelmann, E., Cieslewicz, G., Schwarze, J., Ishizuka, T., Joetham, A., Heusser, C., and Gelfand, E. W. (1999) Anti-interleukin 5 but not anti-IgE prevents airway inflammation and airway hyperresponsiveness,Am. J. Respir. Crit. Care Med.,160, 934-941,https://doi.org/10.1164/ajrccm.160.3.9806029.
- Lundblad, L. K. A., Thompson-Figueroa, J., Allen, G. B., Rinaldi, L., Norton, R. J., Irvin, C. G., and Bates, J. H. T. (2007) Airway hyperresponsiveness in allergically inflamed mice: the role of airway closure,Am. J. Respir. Crit. Care Med.,175, 768-774,https://doi.org/10.1164/rccm.200610-1410OC.
- Agrawal, A., Rengarajan, S., Adler, K. B., Ram, A., Ghosh, B., Fahim, M., and Dickey, B. F. (2007) Inhibition of mucin secretion with MARCKS-related peptide improves airway obstruction in a mouse model of asthma,J. Appl. Physiol.,102399-405,https://doi.org/10.1152/japplphysiol.00630.2006.
- Huang, H. Y., Lee, C. C., and Chiang, B. L. (2008) Small interfering RNA against interleukin-5 decreases airway eosinophilia and hyper-responsiveness,Gene Ther.,15, 660-667,https://doi.org/10.1038/ gt.2008.15.
- Shardonofsky, F. R., Venzor, J.I., Barrios, R., Leong, K.-P., Huston, D. P., and Texas, H. (1999) Therapeutic efficacy of an anti-IL-5 monoclonal antibody delivered into the respiratory tract in a murine model of asthma,J. Allergy Clin. Immunol.,104, 215-221,https://doi.org/10.1016/S0091-6749(99)70138-7.
- Walter, D. M., McIntire, J. J., Berry, G., McKenzie, A. N. J., Donaldson, D. D., DeKruyff, R. H., and Umetsu, D. T. (2001) Critical role for IL-13 in the development of allergen-induced airway hyperreactivity,J. Immunol.,167, 4668-4675,https://doi.org/10.4049/jimmunol.167.8.4668.
- Grünig, G., Warnock, M., Wakil, A. E., Venkaya, R., Brombacher, F., Rennick, D.M., Sheppard, D., Mohrs, M., Donaldson, D. D., Locksley, R. M., and Corry, D. B. (1998) Requirement for IL-13 independently of IL-4 in experimental asthma,Science,282, 2261-2263,https://doi.org/10.1126/science.282.5397.2261.
- Wills-Karp, M., Luyimbazi, J., Xu, X., Schofield, B., Neben, T. Y., Karp, C. L., and Donaldson, D. D. (1998) Interleukin-13: central mediator of allergic asthma,Science,282, 2258-2261,https://doi.org/10.1126/science. 282.5397.2258.
- Yang, G., Volk, A., Petley, T., Emmell, E., Giles-Komar, J., Shang, X., Li, J., Anuk, M. D., Shealy, D., Griswold, D. E., and Li, L. (2004) Anti-IL-13 monoclonal antibody inhibits airway hyperresponsiveness, inflammation and airway remodeling,Cytokine,28, 224-232,https://doi.org/10.1016/j.cyto.2004.08.007.
- Kumar, R. K., Herbert, C., Webb, D. C., Li, L., and Foster, P. S. (2004) Effects of anticytokine therapy in a mouse model of chronic asthma,Am. J. Respir. Crit. Care Med.,170, 1043-1048,https://doi.org/10.1164/rccm. 200405-681OC.
- Lively, T. N., Kossen, K., Balhorn, A., Koya, T., Zinnen, S., Takeda, K., Lucas, J. J., Polisky, B., Richards, I. M., and Gelfand, E. W. (2008) Effect of chemically modified IL-13 short interfering RNA on development of airway hyperresponsiveness in mice,J. Allergy Clin. Immunol.,121, 88-94,https://doi.org/10.1016/j.jaci. 2007.08.029.
- Lee, C. C., Huang, H. Y., and Chiang, B. L. (2011) Lentiviral-mediated interleukin-4 and interleukin-13 RNA interference decrease airway inflammation and hyperresponsiveness,Hum. Gene Ther.,22, 577-586,https://doi.org/10.1089/hum.2009.105.
- Webb, D. C., McKenzie, A. N. J., Koskinen, A. M. L., Yang, M., Mattes, J., and Foster, P. S. (2000) Integrated signals between IL-13, IL-4, and IL-5 regulate airways hyperreactivity,J. Immunol.,165, 108-113,https://doi.org/10.4049/jimmunol.165.1.108.
- Marone, G., Granata, F., Pucino, V., Pecoraro, A., Heffler, E., Loffredo, S., Scadding, G. W., and Varricchi, G. (2019) The intriguing role of interleukin 13 in the pathophysiology of asthma,Front. Pharmacol.,10, 1387,https://doi.org/10.3389/fphar.2019.01387.
- Weinstein, S. F., Katial, R., Jayawardena, S., Pirozzi, G., Staudinger, H., Eckert, L., Joish, V. N., Amin, N.,Maroni, J., Rowe, P., Graham, N. M. H, and Teper, A. (2018) Efficacy and safety of dupilumab in perennial allergic rhinitis and comorbid asthma,J. Allergy Clin. Immunol.,142, 171-177.e1,https://doi.org/10.1016/j.jaci. 2017.11.051.
补充文件
