MITOCHONDRIA IN DEVELOPING BRAIN: CONTRIBUTION OF DEVIATIONS TO HIGHER SUSCEPTIBILITY TO NEURODEGENERATION IN LATTER PERIODS OF LIFE

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

It has been proven that the preclinical period of the sporadic (> 95% of cases) form of Alzheimer's disease (AD) can last for decades, but the question of when the disease begins to develop and what contributes to it remains open. It is assumed that vulnerability to AD can be facilitated by the anatomical and functional parameters of the brain that form early in life. This is also supported by the results of our studies on accelerated senescence OXYS rats, a unique model of AD. The delay in brain maturation revealed in them is associated with insufficient glial support, a key regulator of neural network functioning, and the development of AD signs in OXYS rats is preceded and accompanied by mitochondrial dysfunction. This allowed us to raise the question of whether the structural and functional features of mitochondria can influence the process of brain maturation and thus determine the predisposition to the further development of AD signs. In this study, we compared mitochondrial biogenesis, their traffic and structural state in neuronal cell bodies, axonal and dendritic processes, and the activity of mitochondrial dynamics processes in the prefrontal cortex and hippocampus of OXYS and Wistar rats (control) during the period of brain maturation completion (from birth to 20 days of age). Changes in the number and ultrastructural parameters of mitochondria were compared with the activity of dynamics processes, which was assessed by the frequency of occurrence of mitochondria undergoing fusion or fission, the content of the key protein of their biogenesis PGC- 1a and proteins mediating mitochondrial dynamics (mitofusins MFN1 and MFN2, dynamin- 1- like protein DRP1). In OXYS rats, abnormalities in the formation of the mitochondrial apparatus in the early postnatal period were revealed, which can contribute to the delay in brain maturation of OXYS rats, promote mitochondrial dysfunction, decreased synapse density and, ultimately, neuronal death and the development of early neurodegenerative changes in the future.

About the authors

N. A. Stefanova

Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences

Email: stefanovam@mail.ru
Novosibirsk, Russia

N. A. Muraleva

Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences

Novosibirsk, Russia

D. V. Sityaeva

Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences

Novosibirsk, Russia

M. A. Tyumentsev

University of Tennessee Health Science Center

Memphis, USA

N. G. Kolosova

Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences

Novosibirsk, Russia

References

  1. Prince, M., Ali, G., Guerchet, M., Prina, A., Albanese, E., and Wu, Y. T. (2016) Recent global trends in the prevalence and incidence of dementia, and survival with dementia, Alzheimer’s Res. Ther., 8, 23, https://doi.org/10.1186/s13195-016-0188-8.
  2. Fu, W., and Ip, N. (2023) The role of genetic risk factors of Alzheimer’s disease in synaptic dysfunction, Semin. Cell Dev. Biol., 139, 3-12, https://doi.org/10.1016/j.semcdb.2022.07.011.
  3. Kovacs, G., Adle-Biassette, H., Milenkovic, I., Cipriani, S., van Scheppingen, J., and Aronica, E. (2014) Linking pathways in the developing and aging brain with neuro-degeneration, Neuroscience, 269, 152-172, https://doi.org/10.1016/j.neuroscience.2014.03.045.
  4. Heinonen, K., Eriksson, J., Lahti, J., Kajantie, E., Pesonen, A. K., Tuovinen, S., Osmond, C., and Raikkonen, K. (2015) Late preterm birth and neurocognitive performance in late adulthood: a birth cohort study, Pediatrics, 135, e818-e825, https://doi.org/10.1542/peds.2014-3556.
  5. Barchitta, M., Maugeri, A., La Rosa, M., Magnano San Lio, R., Favara, G., Panella, M., Cianci, A., and Agodi, A. (2018) Single nucleotide polymorphisms in vitamin D receptor gene affect birth weight and the risk of preterm birth: results from the “Mamma & Bambino” cohort and a meta-analysis, Nutrients, 10, 1172, https://doi.org/10.3390/nu10091172.
  6. Donley, G., Lönnroos, E., Tuomainen, T., Kauhanen, J. (2018) Association of childhood stress with late-life dementia and Alzheimer’s disease: the KIHD study, Eur. J. Public. Health, 28, 1069-1073, https://doi.org/10.1093/eurpub/cky134.
  7. Lemche, E. (2018) Early life stress and epigenetics in late-onset Alzheimer’s dementia: a systematic review, Curr. Genomics., 19, 522-602, https://doi.org/10.2174/1389202919666171229145156.
  8. Lesuis, S., Hoeijmakers, L., Korosi, A., de Rooij, S., Swaab, D., Kessels, H., Lucassen, P., and Krugers, H. (2018) Vulnerability and resilience to Alzheimer’s disease: early life conditions modulate neuropathology and determine cognitive reserve, Alzheimer’s Res. Ther., 10, 95, https://doi.org/10.1186/s13195-018-0422-7.
  9. Gauvrit, T., Benderradji, H., Buée, L., Blum, D., and Vieau, D. (2022) Early-life environment influence on late-onset Alzheimer’s disease, Front. Cell Dev. Biol., 10, 834661, https://doi.org/10.3389/fcell.2022.834661.
  10. Leitzel, O., Francis-Oliveira, J., Khedr, S., Ariste, L., Robel, S., Kano, S. I., Arrant, A., and Niwa, M. (2024) Adolescent stress accelerates postpartum novelty recognition impairment in 5xFAD mice, Front. Neurosci., 18, 1366199, https://doi.org/10.3389/fnins.2024.1366199.
  11. Rudnitskaya, E., Kozlova, T., Burnyasheva, A., Kolosova, N. G., and Stefanova, N. A. (2019) Alterations of hippocampal neurogenesis during development of Alzheimer’s disease-like pathology in OXYS rats, Exp. Gerontol., 115, 32-45, https://doi.org/10.1016/j.exger.2018.11.008.
  12. Rudnitskaya, E., Kozlova, T., Burnyasheva, A., Tarasova, A., Pankova, T., Starostina, M., Stefanova, N., and Kolosova, N. (2020) Features of postnatal hippocampal development in a rat model of sporadic Alzheimer’s disease, Front. Neurosci., 14, 533, https://doi.org/10.3389/fnins.2020.00533.
  13. Kozlova, T., Rudnitskaya, E., Burnyasheva, A., Stefanova, N., Peunov, D., and Kolosova, N. (2022) Delayed formation of neonatal reflexes and of locomotor skills is associated with poor maternal behavior in OXYS rats prone to Alzheimer’s disease-like pathology, Biomedicines, 10, 2910, https://doi.org/10.3390/biomedicines10112910.
  14. Rudnitskaya, E., Kozlova, T., Burnyasheva, A., Stefanova, N., and Kolosova, N. (2021) Glia not neurons: uncovering brain dysmaturation in a rat model of Alzheimer’s disease, Biomedicines, 9, 823, https://doi.org/10.3390/biomedicines9070823.
  15. Tyumentsev, M., Stefanova, N., Muraleva, N., Rumyantseva, Y., Kiseleva, E., Vavilin, V., and Kolosova, N. (2018) Mitochondrial dysfunction as a predictor and driver of Alzheimer’s disease-like pathology in OXYS rats, J. Alzheimer’s Dis., 63, 1075-1088, https://doi.org/10.3233/JAD-180065.
  16. Stefanova, N., Muraleva, N., Korbolina, E., Kiseleva, E., Maksimova, K., and Kolosova, N. G. (2015) Amyloid accumulation is a late event in sporadic Alzheimer’s disease-like pathology in nontransgenic rats, Oncotarget, 6, 1396-1413, https://doi.org/10.18632/oncotarget.2751.
  17. Stefanova, N., Ershov, N., Maksimova, K., Muraleva, N., Tyumentsev, M., and Kolosova, N. (2019) The rat prefrontal-cortex transcriptome: effects of aging and Sporadic Alzheimer’s disease-like pathology, J. Gerontol. A. Biol. Sci. Med. Sci., 74, 33-43, https://doi.org/10.1093/gerona/gly198.
  18. Stefanova, N., and Kolosova, N. (2023) The rat brain transcriptome: from infancy to aging and sporadic Alzheimer’s disease-like pathology, Int. J. Mol. Sci., 24, 1462, https://doi.org/10.3390/ijms24021462.
  19. Swerdlow, R. H., and Khan, S. M. (2004) A “mitochondrial cascade hypothesis” for sporadic Alzheimer’s disease, Med. Hypotheses, 63, 8-20, https://doi.org/10.1016/j.mehy.2003.12.045.
  20. Swerdlow, R. H. (2023) The Alzheimer’s disease mitochondrial cascade hypothesis: a current overview, J. Alzheimer’s Dis., 92, 751-768, https://doi.org/10.3233/JAD-221286.
  21. Paxinos, G., and Watson, C. (2007) The Rat Brain in Stereotaxic Coordinates, 6th Edn., Academic Press, Cambridge, MA, USA.
  22. Gu, Y. Y., Zhao, X. R., Zhang, N., Yang, Y., Yi, Y., Shao, Q. H., Liu, M. X., and Zhang, X. L. (2024) Mitochondrial dysfunction as a therapeutic strategy for neurodegenerative diseases: current insights and future directions, Ageing Res. Rev., 102, 102577, https://doi.org/10.1016/j.arr.2024.102577.
  23. Vaarmann, A., Mandel, M., Zeb, A., Wareski, P., Liiv, J., Kuum, M., Antsov, E., Liiv, M., Cagalinec, M., Choubey, V., and Kaasik, A. (2016) Mitochondrial biogenesis is required for axonal growth, Development, 143, 1981-1992, https://doi.org/10.1242/dev.128926.
  24. Tilokani, L., Nagashima, S., Paupe, V., and Prudent, J. (2018) Mitochondrial dynamics: overview of molecular mechanisms, Essays Biochem., 62, https://doi.org/10.1042/EBC20170104.
  25. Eberhardt, E. L., Ludlam, A. V., Tan, Z., and Cianfrocco, M. A. (2020) Miro: a molecular switch at the center of mitochondrial regulation, Protein Sci., 29, 1269-1284, https://doi.org/10.1002/pro.3839.
  26. Henrichs, V., Grycova, L., Barinka, C., Nahacka, Z., Neuzil, J., Diez, S., Rohlena, J., Braun, M., and Lansky, Z. (2020) Mitochondria-adaptor TRAK1 promotes kinesin-1 driven transport in crowded environments, Nat. Commun., 11, 3123, https://doi.org/10.1038/s41467-020-16972-5.
  27. Seifan, A., Schelke, M., Obeng-Aduasare, Y., and Isaacson, R. (2015) Early life epidemiology of Alzheimer’s disease – a critical review, Neuroepidemiology, 45, 237-254, https://doi.org/10.1159/000439568.
  28. Hagberg, H., Mallard, C., Rousset, C. I., and Thornton, C. (2014) Mitochondria: hub of injury responses in the developing brain, Lancet Neurol., 13, 217-232, https://doi.org/10.1016/S1474-4422(13)70261-8.
  29. Arrázola, M. S., Andraini, T., Szelechowski, M., Mouledous, L., Arnauné-Pelloquin, L., Davezac, N., Belenguer, P., Rampon, C., and Miquel, M. C. (2019) Mitochondria in developmental and adult neurogenesis, Neurotox. Res., 36, 257-267, https://doi.org/10.1007/s12640-018-9942-y.
  30. Brunetti, D., Dykstra, W., Le, S., Zink, A., and Prigione, A. (2021) Mitochondria in neurogenesis: implications for mitochondrial diseases, Stem Cells, 39, 1289-1297, https://doi.org/10.1002/stem.3425.
  31. Garone, C., De Giorgio, F., and Carli, S. (2024) Mitochondrial metabolism in neural stem cells and implications for neurodevelopmental and neurodegenerative diseases, J. Transl. Med., 22, 238, https://doi.org/10.1186/s12967-024-05041-w.
  32. Semple, B. D., Blomgren, K., Gimlin, K., Ferriero, D. M., and Noble-Haeusslein, L. J. (2013) Brain development in rodents and humans: identifying benchmarks of maturation and vulnerability to injury across species, Prog. Neurobiol., 106-107, 1-16, https://doi.org/10.1016/j.pneurobio.2013.04.001.
  33. Huszár, R., Zhang, Y., Blockus, H., and Buzsáki, G. (2022) Preconfigured dynamics in the hippocampus are guided by embryonic birthdate and rate of neurogenesis, Nat. Neurosci., 25, 1201-1212, https://doi.org/10.1038/s41593-022-01138-x.
  34. Erecinska, M., Cherian, S., and Silver, I. A. (2004) Energy metabolism in mammalian brain during development, Prog. Neurobiol., 73, 397-445, https://doi.org/10.1016/j.pneurobio.2004.06.003.
  35. Encinas, J. M., Michurina, T. V., Peunova, N., Park, J. H., Tordo, J., Peterson, D. A., Fishell, G., Koulakov, A., and Enikolopov, G. (2011) Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus, Cell Stem Cell, 8, 566-579, https://doi.org/10.1016/j.stem.2011.03.010.
  36. Stefanova, N.A., Maksimova, K.Y., Tyumentsev, M.A., Telegina, D.V., Rudnitskaya, E.A., and Kolosova, N.G. (2025) The early postnatal synapse assembly and expression profiles of synapse-related genes in a sporadic Alzheimer’s disease-like pathology, J. Alzheimers Dis., 13872877251396932, https://doi.org/10.1177/13872877251396932.
  37. Cicali, K. A., and Tapia-Rojas, C. (2024) Synaptic mitochondria: a crucial factor in the aged hippocampus, Ageing Res. Rev., 101, 102524, https://doi.org/10.1016/j.arr.2024.102524.
  38. Khacho, M., Harris, R., and Slack, R. S. (2019) Mitochondria as central regulators of neural stem cell fate and cognitive function, Nat. Rev. Neurosci., 20, 34-48, https://doi.org/10.1038/s41583-018-0091-3.
  39. Li, Z., Okamoto, K.-I., Hayashi, Y., and Sheng, M. (2004) The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses, Cell, 119, 873-887, https://doi.org/10.1016/j.cell.2004.11.003.
  40. Quiroz, J. A., Gray, N. A., Kato, T., and Manji, H. K. (2008) Mitochondrially mediated plasticity in the pathophysiology and treatment of bipolar disorder, Neuropsychopharmacology, 33, 2551-2565, https://doi.org/10.1038/sj.npp.1301671.
  41. Ruthel, G., and Hollenbeck, P. J. (2003) Response of mitochondrial traffic to axon determination and differential branch growth, J. Neurosci., 23, 8618-8624, https://doi.org/10.1523/JNEUROSCI.23-24-08618.2003.
  42. Spillane, M., Ketschek, A., Merianda, T. T., Twiss, J. L., and Gallo, G. (2013) Mitochondria coordinate sites of axon branching through localized intra-axonal protein synthesis, Cell Rep., 5, 1564-1575, https://doi.org/10.1016/j.celrep.2013.11.022.
  43. Sheng, Z. H. (2017) The interplay of axonal energy homeostasis and mitochondrial trafficking and anchoring, Trends Cell Biol., 27, 403-416, https://doi.org/10.1016/j.tcb.2017.01.005.
  44. Tyumentsev, M. A., Stefanova, N. A., Kiseleva, E. V., and Kolosova, N. G. (2018) Mitochondria with morphology characteristic for Alzheimer’s disease patients are found in the brain of OXYS rats, Biochemistry (Moscow), 83, 1083-1088, https://doi.org/10.1134/S0006297918090109.
  45. Zhang, L., Trushin, S., Christensen, T., Bachmeier, B., Gateno, B., Schroeder, A., Yao, J., Itoh, K., Sesaki, H., Poon, W., Gylys, K., Patterson, E., Parisi, J., Diaz Brinton, R., Salisbury, J., and Trushina, E. (2016) Altered brain energetics induces mitochondrial fission arrest in Alzheimer’s disease, Sci. Rep., 6, 18725, https://doi.org/10.1038/srep18725

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).