МИТОХОНДРИИ В РАЗВИВАЮЩЕМСЯ МОЗГЕ: ВКЛАД ОТКЛОНЕНИЙ В ПОВЫШЕННУЮ ВОСПРИИМЧИВОСТЬ К НЕЙРОДЕГЕНЕРАЦИИ В ПОЗДНИЕ ПЕРИОДЫ ЖИЗНИ
- Авторы: Стефанова Н.А.1, Муралева Н.А.1, Ситяева Д.В.1, Тюменцев М.А.2, Колосова Н.Г.1
-
Учреждения:
- Федеральный исследовательский центр Институт цитологии и генетики СО РАН
- Центр медицинских наук Университета Теннесси
- Выпуск: Том 90, № 12 (2025)
- Страницы: 2139-2152
- Раздел: Статьи
- URL: https://ogarev-online.ru/0320-9725/article/view/376142
- DOI: https://doi.org/10.7868/S3034529425120167
- ID: 376142
Цитировать
Аннотация
Об авторах
Н. А. Стефанова
Федеральный исследовательский центр Институт цитологии и генетики СО РАН
Email: stefanovam@mail.ru
Новосибирск, Россия
Н. А. Муралева
Федеральный исследовательский центр Институт цитологии и генетики СО РАННовосибирск, Россия
Д. В. Ситяева
Федеральный исследовательский центр Институт цитологии и генетики СО РАННовосибирск, Россия
М. А. Тюменцев
Центр медицинских наук Университета ТеннессиМемфис, США
Н. Г. Колосова
Федеральный исследовательский центр Институт цитологии и генетики СО РАННовосибирск, Россия
Список литературы
- Prince, M., Ali, G., Guerchet, M., Prina, A., Albanese, E., and Wu, Y. T. (2016) Recent global trends in the prevalence and incidence of dementia, and survival with dementia, Alzheimer’s Res. Ther., 8, 23, https://doi.org/10.1186/s13195-016-0188-8.
- Fu, W., and Ip, N. (2023) The role of genetic risk factors of Alzheimer’s disease in synaptic dysfunction, Semin. Cell Dev. Biol., 139, 3-12, https://doi.org/10.1016/j.semcdb.2022.07.011.
- Kovacs, G., Adle-Biassette, H., Milenkovic, I., Cipriani, S., van Scheppingen, J., and Aronica, E. (2014) Linking pathways in the developing and aging brain with neuro-degeneration, Neuroscience, 269, 152-172, https://doi.org/10.1016/j.neuroscience.2014.03.045.
- Heinonen, K., Eriksson, J., Lahti, J., Kajantie, E., Pesonen, A. K., Tuovinen, S., Osmond, C., and Raikkonen, K. (2015) Late preterm birth and neurocognitive performance in late adulthood: a birth cohort study, Pediatrics, 135, e818-e825, https://doi.org/10.1542/peds.2014-3556.
- Barchitta, M., Maugeri, A., La Rosa, M., Magnano San Lio, R., Favara, G., Panella, M., Cianci, A., and Agodi, A. (2018) Single nucleotide polymorphisms in vitamin D receptor gene affect birth weight and the risk of preterm birth: results from the “Mamma & Bambino” cohort and a meta-analysis, Nutrients, 10, 1172, https://doi.org/10.3390/nu10091172.
- Donley, G., Lönnroos, E., Tuomainen, T., Kauhanen, J. (2018) Association of childhood stress with late-life dementia and Alzheimer’s disease: the KIHD study, Eur. J. Public. Health, 28, 1069-1073, https://doi.org/10.1093/eurpub/cky134.
- Lemche, E. (2018) Early life stress and epigenetics in late-onset Alzheimer’s dementia: a systematic review, Curr. Genomics., 19, 522-602, https://doi.org/10.2174/1389202919666171229145156.
- Lesuis, S., Hoeijmakers, L., Korosi, A., de Rooij, S., Swaab, D., Kessels, H., Lucassen, P., and Krugers, H. (2018) Vulnerability and resilience to Alzheimer’s disease: early life conditions modulate neuropathology and determine cognitive reserve, Alzheimer’s Res. Ther., 10, 95, https://doi.org/10.1186/s13195-018-0422-7.
- Gauvrit, T., Benderradji, H., Buée, L., Blum, D., and Vieau, D. (2022) Early-life environment influence on late-onset Alzheimer’s disease, Front. Cell Dev. Biol., 10, 834661, https://doi.org/10.3389/fcell.2022.834661.
- Leitzel, O., Francis-Oliveira, J., Khedr, S., Ariste, L., Robel, S., Kano, S. I., Arrant, A., and Niwa, M. (2024) Adolescent stress accelerates postpartum novelty recognition impairment in 5xFAD mice, Front. Neurosci., 18, 1366199, https://doi.org/10.3389/fnins.2024.1366199.
- Rudnitskaya, E., Kozlova, T., Burnyasheva, A., Kolosova, N. G., and Stefanova, N. A. (2019) Alterations of hippocampal neurogenesis during development of Alzheimer’s disease-like pathology in OXYS rats, Exp. Gerontol., 115, 32-45, https://doi.org/10.1016/j.exger.2018.11.008.
- Rudnitskaya, E., Kozlova, T., Burnyasheva, A., Tarasova, A., Pankova, T., Starostina, M., Stefanova, N., and Kolosova, N. (2020) Features of postnatal hippocampal development in a rat model of sporadic Alzheimer’s disease, Front. Neurosci., 14, 533, https://doi.org/10.3389/fnins.2020.00533.
- Kozlova, T., Rudnitskaya, E., Burnyasheva, A., Stefanova, N., Peunov, D., and Kolosova, N. (2022) Delayed formation of neonatal reflexes and of locomotor skills is associated with poor maternal behavior in OXYS rats prone to Alzheimer’s disease-like pathology, Biomedicines, 10, 2910, https://doi.org/10.3390/biomedicines10112910.
- Rudnitskaya, E., Kozlova, T., Burnyasheva, A., Stefanova, N., and Kolosova, N. (2021) Glia not neurons: uncovering brain dysmaturation in a rat model of Alzheimer’s disease, Biomedicines, 9, 823, https://doi.org/10.3390/biomedicines9070823.
- Tyumentsev, M., Stefanova, N., Muraleva, N., Rumyantseva, Y., Kiseleva, E., Vavilin, V., and Kolosova, N. (2018) Mitochondrial dysfunction as a predictor and driver of Alzheimer’s disease-like pathology in OXYS rats, J. Alzheimer’s Dis., 63, 1075-1088, https://doi.org/10.3233/JAD-180065.
- Stefanova, N., Muraleva, N., Korbolina, E., Kiseleva, E., Maksimova, K., and Kolosova, N. G. (2015) Amyloid accumulation is a late event in sporadic Alzheimer’s disease-like pathology in nontransgenic rats, Oncotarget, 6, 1396-1413, https://doi.org/10.18632/oncotarget.2751.
- Stefanova, N., Ershov, N., Maksimova, K., Muraleva, N., Tyumentsev, M., and Kolosova, N. (2019) The rat prefrontal-cortex transcriptome: effects of aging and Sporadic Alzheimer’s disease-like pathology, J. Gerontol. A. Biol. Sci. Med. Sci., 74, 33-43, https://doi.org/10.1093/gerona/gly198.
- Stefanova, N., and Kolosova, N. (2023) The rat brain transcriptome: from infancy to aging and sporadic Alzheimer’s disease-like pathology, Int. J. Mol. Sci., 24, 1462, https://doi.org/10.3390/ijms24021462.
- Swerdlow, R. H., and Khan, S. M. (2004) A “mitochondrial cascade hypothesis” for sporadic Alzheimer’s disease, Med. Hypotheses, 63, 8-20, https://doi.org/10.1016/j.mehy.2003.12.045.
- Swerdlow, R. H. (2023) The Alzheimer’s disease mitochondrial cascade hypothesis: a current overview, J. Alzheimer’s Dis., 92, 751-768, https://doi.org/10.3233/JAD-221286.
- Paxinos, G., and Watson, C. (2007) The Rat Brain in Stereotaxic Coordinates, 6th Edn., Academic Press, Cambridge, MA, USA.
- Gu, Y. Y., Zhao, X. R., Zhang, N., Yang, Y., Yi, Y., Shao, Q. H., Liu, M. X., and Zhang, X. L. (2024) Mitochondrial dysfunction as a therapeutic strategy for neurodegenerative diseases: current insights and future directions, Ageing Res. Rev., 102, 102577, https://doi.org/10.1016/j.arr.2024.102577.
- Vaarmann, A., Mandel, M., Zeb, A., Wareski, P., Liiv, J., Kuum, M., Antsov, E., Liiv, M., Cagalinec, M., Choubey, V., and Kaasik, A. (2016) Mitochondrial biogenesis is required for axonal growth, Development, 143, 1981-1992, https://doi.org/10.1242/dev.128926.
- Tilokani, L., Nagashima, S., Paupe, V., and Prudent, J. (2018) Mitochondrial dynamics: overview of molecular mechanisms, Essays Biochem., 62, https://doi.org/10.1042/EBC20170104.
- Eberhardt, E. L., Ludlam, A. V., Tan, Z., and Cianfrocco, M. A. (2020) Miro: a molecular switch at the center of mitochondrial regulation, Protein Sci., 29, 1269-1284, https://doi.org/10.1002/pro.3839.
- Henrichs, V., Grycova, L., Barinka, C., Nahacka, Z., Neuzil, J., Diez, S., Rohlena, J., Braun, M., and Lansky, Z. (2020) Mitochondria-adaptor TRAK1 promotes kinesin-1 driven transport in crowded environments, Nat. Commun., 11, 3123, https://doi.org/10.1038/s41467-020-16972-5.
- Seifan, A., Schelke, M., Obeng-Aduasare, Y., and Isaacson, R. (2015) Early life epidemiology of Alzheimer’s disease – a critical review, Neuroepidemiology, 45, 237-254, https://doi.org/10.1159/000439568.
- Hagberg, H., Mallard, C., Rousset, C. I., and Thornton, C. (2014) Mitochondria: hub of injury responses in the developing brain, Lancet Neurol., 13, 217-232, https://doi.org/10.1016/S1474-4422(13)70261-8.
- Arrázola, M. S., Andraini, T., Szelechowski, M., Mouledous, L., Arnauné-Pelloquin, L., Davezac, N., Belenguer, P., Rampon, C., and Miquel, M. C. (2019) Mitochondria in developmental and adult neurogenesis, Neurotox. Res., 36, 257-267, https://doi.org/10.1007/s12640-018-9942-y.
- Brunetti, D., Dykstra, W., Le, S., Zink, A., and Prigione, A. (2021) Mitochondria in neurogenesis: implications for mitochondrial diseases, Stem Cells, 39, 1289-1297, https://doi.org/10.1002/stem.3425.
- Garone, C., De Giorgio, F., and Carli, S. (2024) Mitochondrial metabolism in neural stem cells and implications for neurodevelopmental and neurodegenerative diseases, J. Transl. Med., 22, 238, https://doi.org/10.1186/s12967-024-05041-w.
- Semple, B. D., Blomgren, K., Gimlin, K., Ferriero, D. M., and Noble-Haeusslein, L. J. (2013) Brain development in rodents and humans: identifying benchmarks of maturation and vulnerability to injury across species, Prog. Neurobiol., 106-107, 1-16, https://doi.org/10.1016/j.pneurobio.2013.04.001.
- Huszár, R., Zhang, Y., Blockus, H., and Buzsáki, G. (2022) Preconfigured dynamics in the hippocampus are guided by embryonic birthdate and rate of neurogenesis, Nat. Neurosci., 25, 1201-1212, https://doi.org/10.1038/s41593-022-01138-x.
- Erecinska, M., Cherian, S., and Silver, I. A. (2004) Energy metabolism in mammalian brain during development, Prog. Neurobiol., 73, 397-445, https://doi.org/10.1016/j.pneurobio.2004.06.003.
- Encinas, J. M., Michurina, T. V., Peunova, N., Park, J. H., Tordo, J., Peterson, D. A., Fishell, G., Koulakov, A., and Enikolopov, G. (2011) Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus, Cell Stem Cell, 8, 566-579, https://doi.org/10.1016/j.stem.2011.03.010.
- Stefanova, N.A., Maksimova, K.Y., Tyumentsev, M.A., Telegina, D.V., Rudnitskaya, E.A., and Kolosova, N.G. (2025) The early postnatal synapse assembly and expression profiles of synapse-related genes in a sporadic Alzheimer’s disease-like pathology, J. Alzheimers Dis., 13872877251396932, https://doi.org/10.1177/13872877251396932.
- Cicali, K. A., and Tapia-Rojas, C. (2024) Synaptic mitochondria: a crucial factor in the aged hippocampus, Ageing Res. Rev., 101, 102524, https://doi.org/10.1016/j.arr.2024.102524.
- Khacho, M., Harris, R., and Slack, R. S. (2019) Mitochondria as central regulators of neural stem cell fate and cognitive function, Nat. Rev. Neurosci., 20, 34-48, https://doi.org/10.1038/s41583-018-0091-3.
- Li, Z., Okamoto, K.-I., Hayashi, Y., and Sheng, M. (2004) The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses, Cell, 119, 873-887, https://doi.org/10.1016/j.cell.2004.11.003.
- Quiroz, J. A., Gray, N. A., Kato, T., and Manji, H. K. (2008) Mitochondrially mediated plasticity in the pathophysiology and treatment of bipolar disorder, Neuropsychopharmacology, 33, 2551-2565, https://doi.org/10.1038/sj.npp.1301671.
- Ruthel, G., and Hollenbeck, P. J. (2003) Response of mitochondrial traffic to axon determination and differential branch growth, J. Neurosci., 23, 8618-8624, https://doi.org/10.1523/JNEUROSCI.23-24-08618.2003.
- Spillane, M., Ketschek, A., Merianda, T. T., Twiss, J. L., and Gallo, G. (2013) Mitochondria coordinate sites of axon branching through localized intra-axonal protein synthesis, Cell Rep., 5, 1564-1575, https://doi.org/10.1016/j.celrep.2013.11.022.
- Sheng, Z. H. (2017) The interplay of axonal energy homeostasis and mitochondrial trafficking and anchoring, Trends Cell Biol., 27, 403-416, https://doi.org/10.1016/j.tcb.2017.01.005.
- Tyumentsev, M. A., Stefanova, N. A., Kiseleva, E. V., and Kolosova, N. G. (2018) Mitochondria with morphology characteristic for Alzheimer’s disease patients are found in the brain of OXYS rats, Biochemistry (Moscow), 83, 1083-1088, https://doi.org/10.1134/S0006297918090109.
- Zhang, L., Trushin, S., Christensen, T., Bachmeier, B., Gateno, B., Schroeder, A., Yao, J., Itoh, K., Sesaki, H., Poon, W., Gylys, K., Patterson, E., Parisi, J., Diaz Brinton, R., Salisbury, J., and Trushina, E. (2016) Altered brain energetics induces mitochondrial fission arrest in Alzheimer’s disease, Sci. Rep., 6, 18725, https://doi.org/10.1038/srep18725
Дополнительные файлы


