Compensation for aberrations using high-intensity focused ultrasound for destruction of uterine fibroids
- Authors: Chupova D.D.1, Rosnitskiy P.B.2, Sinitsyn V.E.3, Mershina E.A.3, Sapozhnikov O.A.1, Khokhlova V.A.1
-
Affiliations:
- Lomonosov Moscow State University
- Division of Gastroenterology, Department of Medicine, University of Washington School of Medicine
- University Clinic of Medical Research and Educational Institute of Lomonosov Moscow State University
- Issue: Vol 71, No 5 (2025)
- Pages: 659-668
- Section: ФИЗИЧЕСКАЯ АКУСТИКА
- URL: https://ogarev-online.ru/0320-7919/article/view/376005
- DOI: https://doi.org/10.7868/S3034500625050055
- ID: 376005
Cite item
Abstract
About the authors
D. D. Chupova
Lomonosov Moscow State University
Email: daria.chupova@yandex.ru
Faculty of Physics Moscow, Russia
P. B. Rosnitskiy
Division of Gastroenterology, Department of Medicine, University of Washington School of MedicineSeattle, USA
V. E. Sinitsyn
University Clinic of Medical Research and Educational Institute of Lomonosov Moscow State UniversityMoscow, Russia
E. A. Mershina
University Clinic of Medical Research and Educational Institute of Lomonosov Moscow State UniversityMoscow, Russia
O. A. Sapozhnikov
Lomonosov Moscow State UniversityFaculty of Physics Moscow, Russia
V. A. Khokhlova
Lomonosov Moscow State UniversityFaculty of Physics Moscow, Russia
References
- Аганезова Н.В., Аганезов С.С., Шило М.М. Миома матки: современные практические аспекты заболевания // Проблемы репродукции. 2022. Т. 28. № 4. С. 97–105.
- Stewart E.A., Cookson C.L., Gandolfo R.A., Schulze-Rath R. Epidemiology of uterine fibroids: a systematic review // BJOG. 2017. V. 124. P. 1501–1512.
- Donnez J., Dolmans M.M. Uterine fibroid management: from the present to the future // Hum. Reprod. Update. 2016. V. 22. P. 665–86.
- Kramer K.J., Ottum S., Gonullu D., et al. Reoperation rates for recurrence of fibroids after abdominal myomectomy in women with large uterus // PLoS One. 2021. V. 16. № 12. P. 1–11.
- Yan W., Yuan S., Zhou D., et al. Status and treatment of patients with uterine fibroids in hospitals in central China: a retrospective study from 2018 to 2021 // BMJ Open. 2024. V. 14. № 1. P. 1–7.
- Matlac D.M., et al. Study protocol of a prospective, monocentric, single-arm study investigating the safety and efficacy of local ablation of symptomatic uterine fibroids with US-guided high-intensity focused ultrasound (HIFU) // J. Clin. Med. 2023. V. 12. № 18. P. 1–9.
- Liao L., Xu Y.H., Bai J., Zhan P., Zhou J., Li M.X., Zhang Y. MRI parameters for predicting the effect of ultrasound-guided high-intensity focused ultrasound in the ablation of uterine fibroids // Clin. Radiol. 2023. V. 78. № 1. P. 61–69.
- Сычева В.Б., Синицын В.Е., Мершина Е.А. Методика геохимической ультразвуковой абляции для лечения миом матки // Диагностическая интервенционная радиология. 2009. Т. 3 № 2. С. 77–87.
- Gavrilov L.R., Hand J.W. A theoretical assessment of the relative performance of spherical phased arrays for ultrasound surgery // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2000. V. 47. № 1. P. 125–139.
- Ильин С.А., Юлдашев П.В., Хохлова В.А., Гаврилов Л.Р., Росницкий П.Б., Сапожников О.А. Применение аналитического метода для оценки качества акустических полей при электронном перемещении фокуса многоэлементных терапевтических решеток // Акуст. журн. 2015. Т. 61. № 1. С. 57–64.
- Ji Y., Hu K., Zhang Y., Gu L., Zhu J., Zhu L., Zhu Y., Zhao H. High-intensity focused ultrasound (HIFU) treatment for uterine fibroids: a meta-analysis // Arch. Gynecol. Obstet. 2017. V. 296. № 6. P. 1181–1188.
- Rueff L.E., Raman S.S. Clinical and technical aspects of MR-guided high intensity focused ultrasound for treatment of symptomatic uterine fibroids // Semin. Intervent. Radiol. 2013. V. 30. № 4. P. 347–353.
- Kong C.Y., Meng L., Omer Z.B., Swan J.S., Srouji S., Gazelle G.S., Fennessy F.M. MRI-guided focused ultrasound surgery for uterine fibroid treatment: a cost-effectiveness analysis // AJR. Am. J. Roentgenol. 2014. V. 203. P. 361–371.
- Khokhlova T.D., Canney M.S., Khokhlova V.A., Sapozhnikov O.A., Crum L.A., Bailey M.R. Controlled tissue emulsification produced by high intensity focused ultrasound shock waves and millisecond boiling // J. Acoust. Soc. Am. 2011. V. 130. № 5. P. 3498–3510.
- Canney M.S., Khokhlova V.A., Bessonova O.V. et al. Shock-induced heating and millisecond boiling in gels and tissue due to high intensity focused ultrasound // Ultrasound in Medicine and Biology. 2010. V. 36. № 2. P. 250–267.
- Bawiec C.R., et al. A prototype therapy system for boiling histotripsy in abdominal targets based on 256-element spiral array // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2021. V. 68. № 5. P. 1496–1510.
- Ponomarchuk E., Tsysar S., Kashennikova A. et al. Pilot study on boiling histotripsy treatment of human leiomyoma ex vivo // Ultrasound in Medicine and Biology. 2024. V. 50. № 8. P. 1255–1261.
- Rosnitskiy P.B., Vysokanov B.A., Gavrilov L.R., Sapozhnikov O.A., Khokhlova V.A. Method for designing multielement fully populated random phased arrays for ultrasound surgery applications // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2018. V. 65. № 4. P. 630–637.
- Tsysar S.A., Rosnitskiy P.B., Asfanatyarov S.A. et al. Phase correction of the channels of a fully populated randomized multielement therapeutic array using the acoustic holography method // Acoust. Phys. 2024. V. 70. № 1. P. 82–89.
- Karzova M.M., Kreider W., Partanen A., Khokhlova T.D., Sapozhnikov O.A., Yuldashev P.V., Khokhlova V.A. Comparative characterization of nonlinear ultrasound fields generated by Sonalleve VI and V2 MR-HIFU systems // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2023. V. 70. № 6. P. 521–537.
- Peek A.T., Hunter C., Kreider W., Khokhlova T.D., Rosnitskiy P.B., Yuldashev P.V., Sapozhnikov O.A., Khokhlova V.A. Bilayer aberration-inducing gel phantom for high intensity focused ultrasound applications // J. Acoust. Soc. Am. 2020. V. 148. № 6. P. 3569–3580.
- Mast T.D. Empirical relationships between acoustic parameters in human soft tissues // ARLO. 2000. V. 1. № 2. P. 37–42.
- Pinter C., Lasso A., Fichtinger G. Polymorph segmentation representation for medical image computing // Comp. Methods and Progr. in Biomed. 2019. V. 171. P. 19–26.
- Duck F.A. Physical properties of tissues: a comprehensive reference book. New York, NY, USA: Academic Press, 2013.
- Hasgall P. A et al. IT'IS Tissue properties database V4-1, Version 4.1. // 2022 [Online]. Available: https://itis.swiss/virtual-population/tissue-properties/database/acoustic-properties/
- Robertson J.L.B., Cox B.T., Jaros J., Treeby B.E. Accurate simulation of transcranial ultrasound propagation for ultrasonic neuromodulation and stimulation // J. Acoust. Soc. Am. 2017. V. 141. № 3. P. 1726–1738.
- Khokhlova T.D., Hwang J.H. HIFU for palliative treatment of pancreatic cancer // Adv. Exp. Med. Biol. 2016. V. 880. P. 83–95.
- Rosnitskiy P.B., Khokhlova T.D., Schade G.R., Sapozhnikov O.A., Khokhlova V.A. Treatment planning and aberration correction algorithm for HIFU ablation of renal tumors // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2024. V. 71. № 3. P. 341–353.
- Treeby B.E., Jaros J., Rendell A.P., Cox B.T. Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method // J. Acoust. Soc. Am. 2012. V. 131. № 6. P. 4324–4336.
- Sapozhnikov O.A., Tsysar S.A., Khokhlova V.A., Kreider W. Acoustic holography as a metrological tool for characterizing medical ultrasound sources and fields // J. Acoust. Soc. Am. 2015. V. 138. № 3. P. 1515–1532.
- Rosnitskiy P.B., Yuldashev P.V., Sapozhnikov O.A., Gavrilov L.R., Khokhlova V.A. Simulation of nonlinear trans-skull focusing and formation of shocks in brain using a fully populated ultrasound array with aberration correction // J. Acoust. Soc. Am. 2019. V. 146. № 3. P. 1786–1798.
Supplementary files


