Compensation for aberrations using high-intensity focused ultrasound for destruction of uterine fibroids

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In a numerical experiment, we analyzed the distortion of an ultrasound beam when focusing through the abdominal wall into the area of uterine fibroids and assessed the possibility of compensation for aberrations caused by inhomogeneities of human body tissues. A three-dimensional acoustic model of the female pelvic organs was constructed based on anonymized CT data. The field was calculated by combining the analytical method for calculating the Rayleigh integral and the pseudospectral method for solving the wave equation in an inhomogeneous medium (k-Wave software package). The diffraction algorithm for compensation for aberrations was based on modeling the propagation of a spherical wave from the focal point to the surface of an ultrasonic phased array and optimizing the selection of phases on its elements using the least squares method. A model of a 256-element compact array with an operating frequency of f = 1.2 MHz and an aperture number of F# = 0.75 was used. Significant field distortions and the occurrence of side maxima comparable in amplitude to the main one are demonstrated in the absence of aberration compensation. Compensation for aberrations allowed to ensure precise focusing in the target area and increase the pressure amplitude in focus by 3.2 times.

About the authors

D. D. Chupova

Lomonosov Moscow State University

Email: daria.chupova@yandex.ru
Faculty of Physics Moscow, Russia

P. B. Rosnitskiy

Division of Gastroenterology, Department of Medicine, University of Washington School of Medicine

Seattle, USA

V. E. Sinitsyn

University Clinic of Medical Research and Educational Institute of Lomonosov Moscow State University

Moscow, Russia

E. A. Mershina

University Clinic of Medical Research and Educational Institute of Lomonosov Moscow State University

Moscow, Russia

O. A. Sapozhnikov

Lomonosov Moscow State University

Faculty of Physics Moscow, Russia

V. A. Khokhlova

Lomonosov Moscow State University

Faculty of Physics Moscow, Russia

References

  1. Аганезова Н.В., Аганезов С.С., Шило М.М. Миома матки: современные практические аспекты заболевания // Проблемы репродукции. 2022. Т. 28. № 4. С. 97–105.
  2. Stewart E.A., Cookson C.L., Gandolfo R.A., Schulze-Rath R. Epidemiology of uterine fibroids: a systematic review // BJOG. 2017. V. 124. P. 1501–1512.
  3. Donnez J., Dolmans M.M. Uterine fibroid management: from the present to the future // Hum. Reprod. Update. 2016. V. 22. P. 665–86.
  4. Kramer K.J., Ottum S., Gonullu D., et al. Reoperation rates for recurrence of fibroids after abdominal myomectomy in women with large uterus // PLoS One. 2021. V. 16. № 12. P. 1–11.
  5. Yan W., Yuan S., Zhou D., et al. Status and treatment of patients with uterine fibroids in hospitals in central China: a retrospective study from 2018 to 2021 // BMJ Open. 2024. V. 14. № 1. P. 1–7.
  6. Matlac D.M., et al. Study protocol of a prospective, monocentric, single-arm study investigating the safety and efficacy of local ablation of symptomatic uterine fibroids with US-guided high-intensity focused ultrasound (HIFU) // J. Clin. Med. 2023. V. 12. № 18. P. 1–9.
  7. Liao L., Xu Y.H., Bai J., Zhan P., Zhou J., Li M.X., Zhang Y. MRI parameters for predicting the effect of ultrasound-guided high-intensity focused ultrasound in the ablation of uterine fibroids // Clin. Radiol. 2023. V. 78. № 1. P. 61–69.
  8. Сычева В.Б., Синицын В.Е., Мершина Е.А. Методика геохимической ультразвуковой абляции для лечения миом матки // Диагностическая интервенционная радиология. 2009. Т. 3 № 2. С. 77–87.
  9. Gavrilov L.R., Hand J.W. A theoretical assessment of the relative performance of spherical phased arrays for ultrasound surgery // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2000. V. 47. № 1. P. 125–139.
  10. Ильин С.А., Юлдашев П.В., Хохлова В.А., Гаврилов Л.Р., Росницкий П.Б., Сапожников О.А. Применение аналитического метода для оценки качества акустических полей при электронном перемещении фокуса многоэлементных терапевтических решеток // Акуст. журн. 2015. Т. 61. № 1. С. 57–64.
  11. Ji Y., Hu K., Zhang Y., Gu L., Zhu J., Zhu L., Zhu Y., Zhao H. High-intensity focused ultrasound (HIFU) treatment for uterine fibroids: a meta-analysis // Arch. Gynecol. Obstet. 2017. V. 296. № 6. P. 1181–1188.
  12. Rueff L.E., Raman S.S. Clinical and technical aspects of MR-guided high intensity focused ultrasound for treatment of symptomatic uterine fibroids // Semin. Intervent. Radiol. 2013. V. 30. № 4. P. 347–353.
  13. Kong C.Y., Meng L., Omer Z.B., Swan J.S., Srouji S., Gazelle G.S., Fennessy F.M. MRI-guided focused ultrasound surgery for uterine fibroid treatment: a cost-effectiveness analysis // AJR. Am. J. Roentgenol. 2014. V. 203. P. 361–371.
  14. Khokhlova T.D., Canney M.S., Khokhlova V.A., Sapozhnikov O.A., Crum L.A., Bailey M.R. Controlled tissue emulsification produced by high intensity focused ultrasound shock waves and millisecond boiling // J. Acoust. Soc. Am. 2011. V. 130. № 5. P. 3498–3510.
  15. Canney M.S., Khokhlova V.A., Bessonova O.V. et al. Shock-induced heating and millisecond boiling in gels and tissue due to high intensity focused ultrasound // Ultrasound in Medicine and Biology. 2010. V. 36. № 2. P. 250–267.
  16. Bawiec C.R., et al. A prototype therapy system for boiling histotripsy in abdominal targets based on 256-element spiral array // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2021. V. 68. № 5. P. 1496–1510.
  17. Ponomarchuk E., Tsysar S., Kashennikova A. et al. Pilot study on boiling histotripsy treatment of human leiomyoma ex vivo // Ultrasound in Medicine and Biology. 2024. V. 50. № 8. P. 1255–1261.
  18. Rosnitskiy P.B., Vysokanov B.A., Gavrilov L.R., Sapozhnikov O.A., Khokhlova V.A. Method for designing multielement fully populated random phased arrays for ultrasound surgery applications // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2018. V. 65. № 4. P. 630–637.
  19. Tsysar S.A., Rosnitskiy P.B., Asfanatyarov S.A. et al. Phase correction of the channels of a fully populated randomized multielement therapeutic array using the acoustic holography method // Acoust. Phys. 2024. V. 70. № 1. P. 82–89.
  20. Karzova M.M., Kreider W., Partanen A., Khokhlova T.D., Sapozhnikov O.A., Yuldashev P.V., Khokhlova V.A. Comparative characterization of nonlinear ultrasound fields generated by Sonalleve VI and V2 MR-HIFU systems // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2023. V. 70. № 6. P. 521–537.
  21. Peek A.T., Hunter C., Kreider W., Khokhlova T.D., Rosnitskiy P.B., Yuldashev P.V., Sapozhnikov O.A., Khokhlova V.A. Bilayer aberration-inducing gel phantom for high intensity focused ultrasound applications // J. Acoust. Soc. Am. 2020. V. 148. № 6. P. 3569–3580.
  22. Mast T.D. Empirical relationships between acoustic parameters in human soft tissues // ARLO. 2000. V. 1. № 2. P. 37–42.
  23. Pinter C., Lasso A., Fichtinger G. Polymorph segmentation representation for medical image computing // Comp. Methods and Progr. in Biomed. 2019. V. 171. P. 19–26.
  24. Duck F.A. Physical properties of tissues: a comprehensive reference book. New York, NY, USA: Academic Press, 2013.
  25. Hasgall P. A et al. IT'IS Tissue properties database V4-1, Version 4.1. // 2022 [Online]. Available: https://itis.swiss/virtual-population/tissue-properties/database/acoustic-properties/
  26. Robertson J.L.B., Cox B.T., Jaros J., Treeby B.E. Accurate simulation of transcranial ultrasound propagation for ultrasonic neuromodulation and stimulation // J. Acoust. Soc. Am. 2017. V. 141. № 3. P. 1726–1738.
  27. Khokhlova T.D., Hwang J.H. HIFU for palliative treatment of pancreatic cancer // Adv. Exp. Med. Biol. 2016. V. 880. P. 83–95.
  28. Rosnitskiy P.B., Khokhlova T.D., Schade G.R., Sapozhnikov O.A., Khokhlova V.A. Treatment planning and aberration correction algorithm for HIFU ablation of renal tumors // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2024. V. 71. № 3. P. 341–353.
  29. Treeby B.E., Jaros J., Rendell A.P., Cox B.T. Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method // J. Acoust. Soc. Am. 2012. V. 131. № 6. P. 4324–4336.
  30. Sapozhnikov O.A., Tsysar S.A., Khokhlova V.A., Kreider W. Acoustic holography as a metrological tool for characterizing medical ultrasound sources and fields // J. Acoust. Soc. Am. 2015. V. 138. № 3. P. 1515–1532.
  31. Rosnitskiy P.B., Yuldashev P.V., Sapozhnikov O.A., Gavrilov L.R., Khokhlova V.A. Simulation of nonlinear trans-skull focusing and formation of shocks in brain using a fully populated ultrasound array with aberration correction // J. Acoust. Soc. Am. 2019. V. 146. № 3. P. 1786–1798.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).