КОМПЕНСАЦИЯ АБЕРРАЦИЙ ПРИ ИСПОЛЬЗОВАНИИ МОЩНОГО ФОКУСИРОВАННОГО УЛЬТРАЗВУКА ДЛЯ ДЕСТРУКЦИИ МИОМЫ МАТКИ
- Авторы: Чупова Д.Д.1, Росницкий П.Б.2, Синицын В.Е.3, Мершина Е.А.3, Сапожников О.А.1, Хохлова В.А.1
-
Учреждения:
- Московский государственный университет им. М.В. Ломоносова
- Division of Gastroenterology, Department of Medicine, University of Washington
- Университетская клиника Медицинского научно-образовательного института МГУ имени М.В. Ломоносова
- Выпуск: Том 71, № 5 (2025)
- Страницы: 659-668
- Раздел: ФИЗИЧЕСКАЯ АКУСТИКА
- URL: https://ogarev-online.ru/0320-7919/article/view/376005
- DOI: https://doi.org/10.7868/S3034500625050055
- ID: 376005
Цитировать
Аннотация
Об авторах
Д. Д. Чупова
Московский государственный университет им. М.В. Ломоносова
Email: daria.chupova@yandex.ru
Москва, Россия
П. Б. Росницкий
Division of Gastroenterology, Department of Medicine, University of WashingtonSchool of Medicine Seattle, USA
В. Е. Синицын
Университетская клиника Медицинского научно-образовательного института МГУ имени М.В. ЛомоносоваМосква, Россия
Е. А. Мершина
Университетская клиника Медицинского научно-образовательного института МГУ имени М.В. ЛомоносоваМосква, Россия
О. А. Сапожников
Московский государственный университет им. М.В. ЛомоносоваМосква, Россия
В. А. Хохлова
Московский государственный университет им. М.В. ЛомоносоваМосква, Россия
Список литературы
- Аганезова Н.В., Аганезов С.С., Шило М.М. Миома матки: современные практические аспекты заболевания // Проблемы репродукции. 2022. Т. 28. № 4. С. 97–105.
- Stewart E.A., Cookson C.L., Gandolfo R.A., Schulze-Rath R. Epidemiology of uterine fibroids: a systematic review // BJOG. 2017. V. 124. P. 1501–1512.
- Donnez J., Dolmans M.M. Uterine fibroid management: from the present to the future // Hum. Reprod. Update. 2016. V. 22. P. 665–86.
- Kramer K.J., Ottum S., Gonullu D., et al. Reoperation rates for recurrence of fibroids after abdominal myomectomy in women with large uterus // PLoS One. 2021. V. 16. № 12. P. 1–11.
- Yan W., Yuan S., Zhou D., et al. Status and treatment of patients with uterine fibroids in hospitals in central China: a retrospective study from 2018 to 2021 // BMJ Open. 2024. V. 14. № 1. P. 1–7.
- Matlac D.M., et al. Study protocol of a prospective, monocentric, single-arm study investigating the safety and efficacy of local ablation of symptomatic uterine fibroids with US-guided high-intensity focused ultrasound (HIFU) // J. Clin. Med. 2023. V. 12. № 18. P. 1–9.
- Liao L., Xu Y.H., Bai J., Zhan P., Zhou J., Li M.X., Zhang Y. MRI parameters for predicting the effect of ultrasound-guided high-intensity focused ultrasound in the ablation of uterine fibroids // Clin. Radiol. 2023. V. 78. № 1. P. 61–69.
- Сычева В.Б., Синицын В.Е., Мершина Е.А. Методика геохимической ультразвуковой абляции для лечения миом матки // Диагностическая интервенционная радиология. 2009. Т. 3 № 2. С. 77–87.
- Gavrilov L.R., Hand J.W. A theoretical assessment of the relative performance of spherical phased arrays for ultrasound surgery // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2000. V. 47. № 1. P. 125–139.
- Ильин С.А., Юлдашев П.В., Хохлова В.А., Гаврилов Л.Р., Росницкий П.Б., Сапожников О.А. Применение аналитического метода для оценки качества акустических полей при электронном перемещении фокуса многоэлементных терапевтических решеток // Акуст. журн. 2015. Т. 61. № 1. С. 57–64.
- Ji Y., Hu K., Zhang Y., Gu L., Zhu J., Zhu L., Zhu Y., Zhao H. High-intensity focused ultrasound (HIFU) treatment for uterine fibroids: a meta-analysis // Arch. Gynecol. Obstet. 2017. V. 296. № 6. P. 1181–1188.
- Rueff L.E., Raman S.S. Clinical and technical aspects of MR-guided high intensity focused ultrasound for treatment of symptomatic uterine fibroids // Semin. Intervent. Radiol. 2013. V. 30. № 4. P. 347–353.
- Kong C.Y., Meng L., Omer Z.B., Swan J.S., Srouji S., Gazelle G.S., Fennessy F.M. MRI-guided focused ultrasound surgery for uterine fibroid treatment: a cost-effectiveness analysis // AJR. Am. J. Roentgenol. 2014. V. 203. P. 361–371.
- Khokhlova T.D., Canney M.S., Khokhlova V.A., Sapozhnikov O.A., Crum L.A., Bailey M.R. Controlled tissue emulsification produced by high intensity focused ultrasound shock waves and millisecond boiling // J. Acoust. Soc. Am. 2011. V. 130. № 5. P. 3498–3510.
- Canney M.S., Khokhlova V.A., Bessonova O.V. et al. Shock-induced heating and millisecond boiling in gels and tissue due to high intensity focused ultrasound // Ultrasound in Medicine and Biology. 2010. V. 36. № 2. P. 250–267.
- Bawiec C.R., et al. A prototype therapy system for boiling histotripsy in abdominal targets based on 256-element spiral array // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2021. V. 68. № 5. P. 1496–1510.
- Ponomarchuk E., Tsysar S., Kashennikova A. et al. Pilot study on boiling histotripsy treatment of human leiomyoma ex vivo // Ultrasound in Medicine and Biology. 2024. V. 50. № 8. P. 1255–1261.
- Rosnitskiy P.B., Vysokanov B.A., Gavrilov L.R., Sapozhnikov O.A., Khokhlova V.A. Method for designing multielement fully populated random phased arrays for ultrasound surgery applications // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2018. V. 65. № 4. P. 630–637.
- Tsysar S.A., Rosnitskiy P.B., Asfanatyarov S.A. et al. Phase correction of the channels of a fully populated randomized multielement therapeutic array using the acoustic holography method // Acoust. Phys. 2024. V. 70. № 1. P. 82–89.
- Karzova M.M., Kreider W., Partanen A., Khokhlova T.D., Sapozhnikov O.A., Yuldashev P.V., Khokhlova V.A. Comparative characterization of nonlinear ultrasound fields generated by Sonalleve VI and V2 MR-HIFU systems // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2023. V. 70. № 6. P. 521–537.
- Peek A.T., Hunter C., Kreider W., Khokhlova T.D., Rosnitskiy P.B., Yuldashev P.V., Sapozhnikov O.A., Khokhlova V.A. Bilayer aberration-inducing gel phantom for high intensity focused ultrasound applications // J. Acoust. Soc. Am. 2020. V. 148. № 6. P. 3569–3580.
- Mast T.D. Empirical relationships between acoustic parameters in human soft tissues // ARLO. 2000. V. 1. № 2. P. 37–42.
- Pinter C., Lasso A., Fichtinger G. Polymorph segmentation representation for medical image computing // Comp. Methods and Progr. in Biomed. 2019. V. 171. P. 19–26.
- Duck F.A. Physical properties of tissues: a comprehensive reference book. New York, NY, USA: Academic Press, 2013.
- Hasgall P. A et al. IT'IS Tissue properties database V4-1, Version 4.1. // 2022 [Online]. Available: https://itis.swiss/virtual-population/tissue-properties/database/acoustic-properties/
- Robertson J.L.B., Cox B.T., Jaros J., Treeby B.E. Accurate simulation of transcranial ultrasound propagation for ultrasonic neuromodulation and stimulation // J. Acoust. Soc. Am. 2017. V. 141. № 3. P. 1726–1738.
- Khokhlova T.D., Hwang J.H. HIFU for palliative treatment of pancreatic cancer // Adv. Exp. Med. Biol. 2016. V. 880. P. 83–95.
- Rosnitskiy P.B., Khokhlova T.D., Schade G.R., Sapozhnikov O.A., Khokhlova V.A. Treatment planning and aberration correction algorithm for HIFU ablation of renal tumors // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2024. V. 71. № 3. P. 341–353.
- Treeby B.E., Jaros J., Rendell A.P., Cox B.T. Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method // J. Acoust. Soc. Am. 2012. V. 131. № 6. P. 4324–4336.
- Sapozhnikov O.A., Tsysar S.A., Khokhlova V.A., Kreider W. Acoustic holography as a metrological tool for characterizing medical ultrasound sources and fields // J. Acoust. Soc. Am. 2015. V. 138. № 3. P. 1515–1532.
- Rosnitskiy P.B., Yuldashev P.V., Sapozhnikov O.A., Gavrilov L.R., Khokhlova V.A. Simulation of nonlinear trans-skull focusing and formation of shocks in brain using a fully populated ultrasound array with aberration correction // J. Acoust. Soc. Am. 2019. V. 146. № 3. P. 1786–1798.
Дополнительные файлы


