Axisymmetric waves in a water-like cylinder
- Authors: Mironov M.A.1, Pyatakov P.A.1, Savitsky O.A.1, Shulyapov S.A.1
-
Affiliations:
- Andreev Acoustics Institute
- Issue: Vol 71, No 3 (2025)
- Pages: 339-346
- Section: КЛАССИЧЕСКИЕ ПРОБЛЕМЫ ЛИНЕЙНОЙ АКУСТИКИ И ТЕОРИИ ВОЛН
- URL: https://ogarev-online.ru/0320-7919/article/view/306580
- DOI: https://doi.org/10.31857/S0320791925030028
- EDN: https://elibrary.ru/jtlwnd
- ID: 306580
Cite item
Abstract
The results of an analytical study of the propagation of axisymmetric normal waves in a solid circular waveguide made of a water-like medium are presented. A water-like medium is a medium in which the velocity of shear waves is significantly lower than the velocity of longitudinal waves. It is shown that the propagation velocities of normal waves are approximately equal to the propagation velocities in a liquid cylinder. This result is radically different from the common statement in the literature that the propagation velocities of normal waves at high frequencies are approximately equal to the velocity of a Rayleigh wave at a flat boundary. The correction to the water-like approximation is calculated, and the contributions of the longitudinal and shear components of the fields for normal waves are obtained. An experimental illustration is provided confirming the results obtained.
About the authors
M. A. Mironov
Andreev Acoustics Institute
Email: mironov_ma@mail.ru
4 Shvernik str., Moscow, Russia, 117292
P. A. Pyatakov
Andreev Acoustics Institute
Email: mironov_ma@mail.ru
4 Shvernik str., Moscow, Russia, 117292
O. A. Savitsky
Andreev Acoustics Institute
Email: mironov_ma@mail.ru
4 Shvernik str., Moscow, Russia, 117292
S. A. Shulyapov
Andreev Acoustics Institute
Author for correspondence.
Email: mironov_ma@mail.ru
4 Shvernik str., Moscow, Russia, 117292
References
- Pochhammer L. Uber die Fortpflanzungsgeschwindigkeiten kleiner Schwingungen in einem unbegrenzten isotropen Kreiscylinder // J. Reine Angew. Math. 1876. V. 81. P. 324–336.
- Chree C. Longitudinal vibrations of a circular bar // Quart. J. Pure Appl. Math. 1886. V. 21. P. 287–298.
- Chree C. The equations of an isotropic elastic solid in polar and cylindrical coordinates, their solutions and applications // Trans. Cambridge Philos. Soc. 1889. V. 14. P. 250–309.
- Redwood M. and Lamb J. On propagation of high frequency compressional waves in isotropic cylinders // Proc. Phys. Soc. London. 1957. V. B70. P. 136–143.
- Вовк А.Е., Гудков В.В. Нормальные продольные волны в упругом цилиндрическом волноводе // Акуст. журн. 1967. Т. 13. № 3. С. 345–351.
- Zemanek J. An Experimental and Theoretical Investigation of Elastic Wave Propagation in a Cylinder // J. Acoust. Soc. Am. 1972. V. 51. P. 265. https://doi.org/10.1121/1.1912838
- Meleshko V.V., Bondarenko A.A., Dovgiy S.A., Trofimchuk A.N., and van Heijst G.J.F. Elastic waveguides: history and the state of the art // J. Mathematical Sciences. 2009. V. 162. № 1. P. 99–120.
- Valsamos G., Casadei F., Solomos G. A numerical study of wave dispersion curves in cylindrical rods with circular cross-section // Applied and Computational Mechanics. 2013. V. 7. P. 99–114.
- Кузнецов С.В., Ильяшенко А.В. Поляризация волн Похгаммера–Кри: аксиально симметричные продольные моды // Акуст. журн. 2018. Т. 64. № 6. С. 657–663.
- Гаджибеков Т.А., Ильяшенко А.В. Теоретические аспекты применения волн Похгаммера–Кри к задачам определения динамического коэффициента Пуассона // Известия Рос. Акад. наук. Механика твердого тела. 2021. № 5. С. 113–126.
- Мокряков В.В. Напряжения в осесимметричной волне Похгаммера–Кри средневолнового диапазона // Акуст. журн. 2022. Т. 68. № 3. С. 240–248.
- Ilyashenko A.V., Kuznetsov S.V. Longitudinal Pochhammer–Chree waves in mild auxetics and non-auxetics // J. of Mechanics. 2019. V. 35. No 3. P. 327. https://doi.org/10.1017/jmech.2018.13
- Ramzi Othman. Wave dispersion analysis in auxetic rods // Int. J. Solids and Structures. 2022. V. 236–237. 111321. https://doi.org/10.1016/j.ijsolstr.2021.111321
- Исакович М.А. Общая акустика. М.: Наука, 1973. 496 с.
- Motta P.H., Roland C.M., Corsaro R.D. Acoustic and dynamic mechanical properties of a polyurethane rubber // J. Acoust. Soc. Am. 2002. V. 111. No 4. P. 1782–1790.
Supplementary files
