Equations of multimoment hydrodynamics in problem on flow around a sphere. 2. The basic asymmetric solution
- Authors: Lebed I.V.1
-
Affiliations:
- Institute of Applied Mechanics, Russian Academy of Science
- Issue: Vol 44, No 6 (2025)
- Pages: 97-108
- Section: ДИНАМИКА ТРАНСПОРТНЫХ ПРОЦЕССОВ
- URL: https://ogarev-online.ru/0207-401X/article/view/305192
- ID: 305192
Cite item
Abstract
The equations of multimoment hydrodynamics are used to interpret flows behind the sphere that do not have axial symmetry. In accordance with the general approach to solving the equations of multimoment hydrodynamics, a set of nonlinear first-order differential equations for unknown coefficients is derived. Numerical integration of the derived equations shows that a high value of the turbulence coefficient provides a transition from the basic axisymmetric solution to the basic weakly asymmetric solution. It was found that the asymmetric solution is not stable. The instability of the asymmetric solution creates prospects for interpreting the observed evolution of weakly asymmetric flow. It becomes possible to reproduce the vortex shedding observed at moderately high values of the Reynolds number. There are prospects for interpreting the turbulence that develops with a further increase in the Reynolds number.
Keywords
About the authors
I. V. Lebed
Institute of Applied Mechanics, Russian Academy of Science
Author for correspondence.
Email: lebed-ivl@yandex.ru
Moscow, Russia
References
- Lebed I. V. // Khim. Fizika. 2025. V. 44.
- Lebed I. V. // Chem. Phys. Rep. 1997. V. 16. P. 1263.
- Tikhonov A. N., Samarskii A. A. Equations of Mathematical Physics. M.: Gostekhizdat, 1953.
- Lebed I.V. The foundations of multimoment hydrodynamics, Part 1: ideas, methods and equations. N.Y.: Nova Science Publishers, 2018.
- Glansdorff P., Prigogine I. Thermodynamic theory of structure, stability, and fluctuations. N.Y.: Willey, 1971.
- Taneda S. // J. Phys. Soc. Jpn. 1956. V. 11. № 10. P. 1104. http:// doi.org/10.1143/JPSJ.11.1104
- Chomaz J. M., Bonneton P., Hopfinger E. J. // J. Fluid Mech. 1993. V. 234. P. 1. http:// doi.org/10.1017/S0022112093002009
- Magarvey R. H., Bishop R. L. // Can. J. Phys. 1961. V. 39. № 7. P. 1418.
- Magarvey R. H., MacLatchy C. S. // Ibid. 1965. V. 43. № 9. P. 1649.
- Winnikow S., Chao B. T. // Phys. Fluids 1966. V. 9. № 1. P. 50.
- Sakamoto H., Haniu H. // J. Fluid Mech. 1995. V. 287. P. 151. http:// doi.org/10.1017/S0022112095000905
- Schuster H.G. Deterministic Chaos. Weinheim: Physik Verlag, 1984.
- Natarajan R., Acrivos A. // J. Fluid Mech. 1993. V. 254. P. 323. http:// doi.org/10.1017/S0022112093002150
- Tomboulides A. G., Orszag S. A. // Ibid. 2000. V. 416. P. 45. http:// doi.org/10.1017/S0022112000008880
- Lebed I. V. // Russ. J. Phys. Chem. B. 2014. V. 8. P. 240. http:// doi.org/10.1134/S1990793114020171
- Kiselev A.Ph., Lebed I.V. // Chaos, Solitons, Fractals, 2021. V. 142. №110491. http:// doi.org/10.1134/S1990793121030222
- Lebed I. V. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 370. http:// doi.org/10.1134/S199079312202018X
- Lebed I. V. // Russ. J. Phys. Chem. B 2023. V. 17. P. 1194. http:// doi.org/10.1134/S1990793123050056
- Lebed I. V. // Russ. J. Phys. Chem. B 2024. V. 18. P. 1396. http:// doi.org/10.1134/S1990793124700957
- Lebed I. V. // Russ. J. Phys. Chem. B 2024. V. 18. P. 1405. http:// doi.org/10.1134/S1990793124700969
Supplementary files
