Analysis of the Protein-Protein Interaction of CREBBP, HTT, and KMT2D by Principal Components Method

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The transcriptional coactivator CREBBP (cyclic AMP response element binding protein-binding protein), neuron-specific transcriptional regulator HTT (huntingtin) and histone-lysine methyltransferase KMT2D (lysine methyltransferase 2D) cooperatively participate in post-translational modification of histones and regulation of differential gene expression. The mechanism of protein-protein interactions has been poorly studied. Computer analysis of the primary structure of proteins using the principal components method revealed the presence of the highest possible correlation between the main components of amino acid sequences in the CREBBP–HTT and CREBBP–KMT2D pairs with glutamine. The trajectory of the first principal component of CREBBP practically coincides with the graph of the positional frequency of glutamine along the protein molecule. It is shown that in the secondary structure of CREBBP a significant share is occupied by E-strand (extended strand) elements with an open conformation of the peptide chain. Polyglutamine tracts localized at the C-terminus of CREBBP, N′-terminus of HTT, N-, C-termini and in the center of KMT2D also have an open conformation facilitating the formation of intermolecular hydrogen bonds. It is assumed that the polyglutamine tracts of the C-terminus of CREBBP and the N-terminus of HTT are directly involved in the protein-protein contact of CREBBP–HTT. A similar connection between the polyglutamine tracts of the C-terminus of CREBBP and the central region of KMT2D fixes the physical interaction in this pair of proteins. The identified features of the studied proteins can be used to design new pharmacological drugs using physicochemical methods.

About the authors

I. I. Khegai

Institute of Cytology and Genetics Federal Research Center, Siberian Branch, Russian Academy of Sciences

Email: khegay@bionet.nsc.ru
Novosibirsk, Russia

R. Gong

Institute of Cytology and Genetics Federal Research Center, Siberian Branch, Russian Academy of Sciences

Novosibirsk, Russia

V. M. Efimov

Institute of Cytology and Genetics Federal Research Center, Siberian Branch, Russian Academy of Sciences

Novosibirsk, Russia

References

  1. Goto N.K., Zor T., Martinez-Yamout M., Dyson H.J., Wright P.E. // J. Biol. Chem. 2002. V. 277. P. 43168–43174. https://doi.org/10.1074/jbc.M207660200
  2. Zhu Y., Wang Z., Li Y., Peng H., Liu J., Zhang J., Xiao X. // Cancers. 2023. V. 15. P. 1219. https://doi.org/10.3390/cancers15041219
  3. Vorobyeva N.E., Mazina M.Y. // Russ. J. Genetics. 2021. V. 57. P. 751–763. https://doi.org/10.1134/S1022795421060144
  4. Liu R., Wu J., Guo H., Yao W., Li S., Lu Y., Jia Y., Liang X., Tang J., Zhang H. // MedComm. 2020. 2023. V. 4. P. e292. https://doi.org/10.1002/mco2.292
  5. Schulte J., Littleton J.T. // Curr. Trends Neurol. 2011. V. 5. P. 65–78. https://pmc.ncbi.nlm.nih.gov/articles/PMC3237673/
  6. Lee J., Kim D.-H., Lee S., Yang Q.-H., Lee D.K., Lee S.-K., Roeder R.G., Lee J.W. // PNAS. 2009. V. 106. P. 8513–8518. https://doi.org/10.1073/pnas.0902873106
  7. Blawski R., Vokshi B.H., Guo X., Kittane S., Sallaku M., Chen W., Gjyzari M., Cheung T., Zhang Y., Simpkins C., Zhou W., Kulick A., Zhao P., Wei M., Shivashankar P., Prioleau T., Razavi P., Koche R., Rebecca V.W., de Stanchina E., Castel P., Chan H.M., Scaltriti M., Cocco E., Ji H., Luo M., Toska E. // Cell Rep. 2024. V. 43. P. 114174. https://doi.org/10.1016/j.cclrep.2024.114174
  8. Knorre D.G., Kudryashova N.V., Godovikova T.S. // Acta Naturae. 2009. V. 1. P. 29–51. https://doi.org/10.32607/20758251-2009-1-3-29-51
  9. Marcelino A.M.C., Gierasch L.M. // Biopolymers. 2008. V. 89. P. 380–391. https://doi.org/10.1002/bip.20960
  10. Eswar N., Ramakrishnan C., Srinivasan N. // Protein Engineering, Design and Selection. 2003. V. 16. P. 331–339. https://doi.org/10.1093/protein/gzg046
  11. Valor L.M., Viosca J., Lopez-Atalaya J.P., Barco A. // Curr. Pharm. Des. 2013. V. 19. P. 5051–5064. https://doi.org/10.2174/13816128113199990382
  12. Vaglietti S., Ferdinando Fiumara F. // NAR Genomics and Bioinformatics. 2021. V. 3. P. lqab032. https://doi.org/10.1093/nargab/lqab032
  13. Gauthier L.R., Charvin B.C., Borrell-Pages M., Dompiere J.P., Rangone H., Cordelières F.P., Mey J.D., MacDonald M.E., Lessmann V., Humbert S., Saudou F. // Cell. 2004. V. 118. P. 127–138. https://doi.org/10.1016/j.cell.2004.06.018
  14. Butler-Ryan R., Wood I.C. // Metab. Brain Dis. 2021. V. 36. P. 1135–1150. https://doi.org/10.1007/s11011-021-00719-2
  15. Hatters D.M. // IUBMB Life. 2008. V. 60. P. 724–728. https://doi.org/10.1002/ub.111
  16. Nucifora F.C., Sasaki M., Peters M.F., Huang H., Cooper J.K., Yamada M., Takahashi H., Tsuji S., Troncoso J., Dawson V.L., Dawson T.M., Ross C.A. // Science. 2001. V. 291. P. 2423–2428. https://doi.org/10.1126/science.1056784
  17. Froimchuk E., Jang Y., Ge K. // Gene. 2017. V. 627. P. 337–342. https://doi.org/10.1016/j.gene.2017.06.056
  18. Lai B., Lee J.E., Jang Y., Wang L., Peng W., Ge K. // Nucleic Acids Res. 2017. V. 45. P. 6388–6403. https://doi.org/10.1093/nar/gkx234
  19. Schaefer M.H., Wanker E.E., Andrade-Navarro M.A. // Nucleic Acids Res. 2012. V. 40. P. 4273–4287. https://doi.org/10.1093/nar/gks011
  20. Ефимов В.М., Ефимов К.В., Ковалева В.Ю. // Вавиловский журн. генетики и селекции. 2019. Т. 23. С. 1032–1036. https://doi.org/10.18699/VJ19.584
  21. Takens F. // Dynam. System. Turbulence, Lecture Notes Mathematic. 1981. V. 898. P. 366–381. https://doi.org/10.1007/BFb0091924
  22. Gower J.C. // Biometrika. 1966. V. 53. P. 325–338. https://doi.org/10.1093/biomet/53.3.4.325
  23. Cavalli-Sforza L.L., Menozzi P., Piazza A. // J. Asian Studies. 1995. V. 54. P. 2173–2219. https://doi.org/10.2307/2058750
  24. Geourjon C., Deleage G. // Comput. Appl. Biosci. 1995. V. 11. P. 681–684. https://doi.org/10.1093/bioinformatics/11.6.681
  25. Hammer O., Harper D.A., Ryan P.D. // Palaeontologia Electronica. 2001. V. 4. P. 1–9. https://palaeo-electronica.org/2001_1/past/issue1_01.htm
  26. Polunin D., Shtaiger I., Efimov V. // bioRxiv. 2019. P. 803684. https://doi.org/10.1101/803684

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).