Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 43, № 6 (2016)

Water Resources and the Regime of Water Bodies

Hydrograph separation of the Dzhankuat River, North Caucasus, with the use of isotope methods

Vasil’chuk Y., Rets E., Chizhova J., Tokarev I., Frolova N., Budantseva N., Kireeva M., Loshakova N.

Аннотация

The formation of snowmelt runoff from the Dzhankuat glacier has been considered and the hydrograph of the Dzhankuat R. has been separated with the use of isotope and ionic balance. Isotope variations of runoff at the outlet section of the Dzhankuat R. have been studied for two ablation seasons of 2013 and 2014. The separation of 2014 hydrograph was based on δ18O and mineralization values obtained for various sources of Dzhankuat R. recharge: precipitation, snow of different seasons, firn, ice, and groundwater. The isotopic separation of the hydrograph has shown that, in June, a considerable portion (15–20%) of Dzhankuat R. total runoff is due to the melting snow cover that has formed during spring snowfalls. In June, the proportion of this component in the total daily runoff can reach 36%. The contribution of the runoff originating from winter-snow melting varies from 20% in the early to 50% in the late June. In August and September, the share of groundwater varies from 30 to 100%; the share of precipitation, from 0 to 30% (on the average for the period, 6%); and the share of water from melting firn and ice, from 0 to 70% (on the average, 38.6%).

Water Resources. 2016;43(6):847-861
pages 847-861 views

Water Quality and Protection: Environmental Aspects

A semiempirical mathematical model of the secondary pollution of water bodies by soluble iron and manganese forms

Savenko V.

Аннотация

A semiempirical mathematical model of iron and manganese migration from bottom sediments into the water mass of water bodies has been proposed based on some basic regularities in the geochemistry of those elements. The entry of dissolved forms of iron and manganese under aeration conditions is assumed negligible. When dissolved-oxygen concentration is <0.5 mg/L, the elements start releasing from bottom sediments, their release rate reaching its maximum under anoxic conditions. The fluxes of dissolved iron and manganese (Me) from bottom sediments into the water mass (JMe) are governed by the gradients of their concentrations in diffusion water sublayer adjacent to sediment surface and having an average thickness of h = 0.025 cm: \({J_{Me}} = - {D_{Me}}\frac{{{C_{Me\left( {ss} \right)}} - {C_{Me\left( w \right)}}}}{h}\) (DMe ≈ 1 × 10–9 m2/s is molecular diffusion coefficient of component Me in solution; CMe(ss) and CMe(w) ≈ 0 are Me concentrations on sediment surface, i.e., on the bottom boundary of the diffusion water sublayer, and in the water mass, i.e., on the upper boundary of the diffusion water sublayer). The value of depends on water saturation with dissolved oxygen (\({\eta _{{O_2}}}\)) in accordance with the empiric relationship \({C_{Me\left( {ss} \right)}} = \frac{{C_{_{Me\left( {ss} \right)}}^{\max }}}{{1 + k{\eta _{{O_2}}}}}\) (k is a constant factor equal to 300 for iron and 100 for manganese; CMe(ss)max is the maximal concentration of Me on the bottom boundary of the diffusion water sublayer with CFe(ss)max ≈ 200 μM (11 mg/L), and CMn(ss)max ≈ 100 μM (5.5 mg/L).

Water Resources. 2016;43(6):862-872
pages 862-872 views

Characteristic of Lower Don aquatic ecosystem in late autumn

Matishov G., Stepan’yan O., Har’kovskii V., Startsev A., Bulysheva N., Semin V., Soier V., Kreneva K., Glushchenko G., Svistunova L.

Аннотация

Multidisciplinary studies were carried out in the Lower Don River in the low-water November of 2012. The studies showed relatively low concentrations of oil products (up to 2 MAC) and heavy metals (up to 1 MAC), which were likely due to the cessation of navigation in the river. However, copper concentration was found to be in excess of its MAC. The most polluted were found to be the port water areas of the cities of Volgodonsk, Ust’-Donetsk, and Semikarakorsk. The distribution of nutrients over streams is uneven: the Don water is poorer in nutrients than the waters of the Severskii Donets and the Manych are. Oxbows can serve as depots of organic matter, where it accumulates over longer periods than in the river. The residual manifestations of the summer–autumn blooming of blue-green algae, observed in shallows, the predominance of algae of divisions Cryptophyta and Bacillariophyta (typical representatives of winter planktonic algacenosis), and their low abundance suggest the transitional state of phytoplankton communities to autumn–winter season (pre-winter period). The species diversity and biomass of zooplankton were largest in the Don R. and lowest in the Severskii Donets R. The formation of zooplankton species composition shows the effect of the runoff from the Tsimlyanskoe Reservoir. An increase in the proportion of oligochaetes and invading species was recorded in the Don. The decrease in the diversity of benthos is attributed to natural factors, i.e., the decay of imago and thicket forms in autumn. The biomass of the soft (food) benthos is low because of the predominance of its small-size forms.

Water Resources. 2016;43(6):873-884
pages 873-884 views

Evaluating BOD and the coefficient of oxidation rate: Monitoring, direct and inverse problems, formulas, calculations and tables

Gotovtsev A.

Аннотация

It is proposed to evaluate two theoretical characteristics, i.e., BOD (biochemical oxygen demand) and k0 (the coefficient of oxidation rate by new formulas based on two experimental variables: BODT and BOD2T (biochemical oxygen consumption in two periods T and 2T day, respectively). The formulation and an analytical solution are given for a direct problem describing the process of biochemical oxidation of organic matter (OM) in a water volume in the absence of aeration (e.g., in a water body under ice or in a sealed flask used to measure biochemical oxygen consumption). The problem is solved based on the closed (modified) Streeter–Phelps system. Unlike the classical Streeter–Phelps system, the closed system excludes physically incorrect solutions (e.g., negative concentrations of dissolved oxygen (DO)) [4]. The solution of the direct problem is used to formulate an inverse problem, whose solution is given in the form of formulas for evaluating BOD and k0. These formulas are used to compile tables to illustrate the essence of the proposed method.

Water Resources. 2016;43(6):885-898
pages 885-898 views

Interaction between Continental Waters and the Environment

Potential and visible evaporation and its variations in European Russia over the recent 50 years by experimental data

Speranskaya N.

Аннотация

Variations in pan evaporation in European Russia from 1951 to 2010 have been studied, and regions with specific variations of potential evaporation have been identified. It is shown that evaporation decseases all over the territory under consideration, and intensity of its decreasing up to the late 1970s was far in excess of that in the decades that followed. The decrease in the variations in evaporation may be regarded as an indicator of reduction of intensity of heat and moisture exchange between the underlying surface and the atmosphere. A new characteristic of the moisture regime of the territory, i.e., visible evaporation, was introduced to characterize, in this case, the amount of free moisture in the atmosphere that can be involved in the terrestrial water cycle. The humidity of the territory in the European Russia has shown to have increased since 1966. Regions where changes in the moisture regime show common patterns have been identified and the specific features of humidity distribution in different natural zones of European Russia have been assessed.

Water Resources. 2016;43(6):899-909
pages 899-909 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».