TIME DEPENDENCE OF STABILITY OF THE WATER-VAPOR PHASE TRANSITION FRONT IN HIGH-TEMPERATURE ROCKS

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We investigate the stability of a water boiling front in high-temperature rocks, which separates a water-saturated region from a region saturated with superheated vapor. Such flows arise both during the exploitation of geothermal reservoirs and in natural processes. We conduct the stability analysis using the modified method of normal modes, where the amplitude of pressure perturbation depends on time, and the water-saturated region is bounded.We studied resulting dispersion equation numerically and asymptotically. We found that the stability criterion depends on time and asymptotically approaches the solution for an infinite water-saturated region.We show that the transition to instability occurs at finite wavenumbers, and the characteristic scale of the most unstable perturbations remains almost unchanged over time.

Sobre autores

K. Zhitnikov

Ishlinsky Institute for Problems in Mechanics RAS

Email: k.zhitnik01@gmail.com
Moscow, Russia

G. Tsypkin

Ishlinsky Institute for Problems in Mechanics RAS

Email: tsypkin@ipmnet.ru
Moscow, Russia

Bibliografia

  1. Grant M.A. Review no. 1 Geothermal reservoir modeling // Geothermics. 1983. Т. 12.№4. С. 251–263.
  2. Schubert G., Straus J.M. Gravitational stability of water over steam in vapor-dominated geothermal systems // J. Geophys. Res. 1980. Т. 85.№B11. С. 6505–6512.
  3. Tsypkin G.G., Il’ichev A.T. Gravitational stability of the interface in water over steam geothermal reservoirs // Transport in porous media. 2004. Т. 55. С. 183–199.
  4. Tsypkin G.G., Il’ichev A.T. Superheating of water and morphological instability of the boiling front moving in the low-permeability rock // Int. J. Heat Mass Transfer. 2021. Т. 167. С. 120820.
  5. Цыпкин Г.Г. Исследование перехода к неустойчивости фронта кипения воды при инжекции в геотермальный резервуар // ТМФ. 2022. Т. 211.№2. С. 347–357.
  6. Цыпкин Г.Г. Неустойчивость фронта фазового перехода при инжекции воды в высокотемпературные породы // Тр. МИАН им. В.А. Стеклова. 2018. Т. 300. С. 197–204.
  7. Куликовский А.Г. Об устойчивости однородных состояний // ПММ. 1966. Т. 30.№1. С. 148–153.
  8. Riaz A., Hesse M., Tchelepi H.A., Orr F.M. Onset of convection in a gravitationally unstable boundary layer in porous media // J. Fluid Mech. 2006. Т. 548. С. 87–111.
  9. Rapaka S., Pawar R., Stauffer P., Zhang D., Chen S. Onset of convection over a transient base-state in anisotropic and layered porous media // J. Fluid Mech. 2009. Т. 641. С. 227–244.
  10. Tilton N., Riaz A. Nonlinear stability of gravitationally unstable, transient, diffusive boundary layers in porous media // J. Fluid Mech. 2014. Т. 745. С. 251–278.
  11. Tilton N., Daniel D., Riaz A. The initial transient period of gravitationally unstable diffusive boundary layers developing in porous media // Phys. Fluids. 2013. Т. 25.№9.
  12. Daniel D., Riaz A. Effect of viscosity contrast on gravitationally unstable diffusive layers in porous media // Phys. Fluids. 2014. Т. 26.№11.
  13. Mahmoodpour S., Rostami B., Soltanian M.R., Amooie M.A. Effect of brine composition on the onset of convection during CO2 dissolution in brine // Comput. and Geosciences. 2019. Т. 124. С. 1–13.
  14. Trefethen L.N., Trefethen A.E., Reddy S.C., Driscoll T.A.Hydrodynamic stability without eigenvalues // Science. 1993. Т. 261.№5121. С. 578–584.
  15. Luther E.E., Dallaston M.C., Shariatipour S.M., Holtzman R. Onset of convective instability in an inclined porous medium // Phys. Fluids. 2022. Т. 34.№1.
  16. Elgahawy Y., Azaiez J. Rayleigh–Taylor instability in porous media under sinusoidal time-dependent flow displacements // AIP Advances. 2020. Т. 10.№7.
  17. Соболева Е.Б. Численное моделирование фильтрационных концентрационно-конвективных течений с контрастом вязкости // Ж. вычисл. матем. и матем. физ. 2022. Т. 62.№11. С. 1927–1939.
  18. Соболева Е.Б. Метод численного моделирования концентрационно-конвективных течений в пористых средах в приложении к задачам геологии // Ж. вычисл. матем. и матем. физ. 2019. Т. 59.№11. С. 1961–1972.
  19. Brownell Jr D.H., Garg S.K., Pritchett J.W. Governing equations for geothermal reservoirs //Water Resour. Res. 1977. Т. 13.№6. С. 929–934.
  20. Tsypkin G.G., Calore C. Influence of capillary forces on water injection into hot rock, saturated with superheated vapour // Int. J. Heat Mass Transfer. 2007. Т. 50.№15–16. С. 3195–3202.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».