АНАЛИЗ ПОГРЕШНОСТЕЙ ЧИСЛЕННЫХ МЕТОДОВ РЕШЕНИЯ ЗАДАЧ ОПТИМИЗАЦИИ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В статье рассматриваются методы оценки ошибок решений в задачах оптимизации, которые делятся на две категории: теоретические и численные. Теоретические оценки основаны на анализе сходимости и полезны в основном для качественных выводов, тогда как численные оценки предоставляют точные значения, но ограничены применением к определенным методам. В статье предложены два новых численных метода оценки ошибок для широкого класса задач оптимизации. Первый метод использует трехточечную схему для получения точной оценки ошибки на основе убывающей последовательности значений целевой функции. Второй метод, называемый методом округления, оценивает ошибку, отслеживая увеличение количества значимых цифр решения по мере продвижения итераций. Для подтверждения эффективности этих методов приведены численные эксперименты. Библ. 9. Фиг. 7. Табл. 9.

Об авторах

А. В. Чернов

Московский физико-технический институт; ФИЦ ИУ РАН

Email: chernov.av@mipt.ru
Долгопрудный, Россия; Москва, Россия

А. Г. Бирюков

Московский физико-технический институт; ФИЦ ИУ РАН

Долгопрудный, Россия; Москва, Россия

А. М. Лисаченко

ФИЦ ИУ РАН

Москва, Россия

Ю. Г. Чернова

МГУ им. Ломоносова

Москва, Россия

Список литературы

  1. Gill P.E., Murray W.V., Wright M.H. Practical Optimization. London: Academic Press, 1981.
  2. Гасников А.В. Современные численные методы оптимизации. М.: МФТИ, 2018. 2-е изд.
  3. Немировский А.С., Юдин Д.Б. Сложность задач и эффективность методов оптимизации. М: Наука, 1979.
  4. Нестеров Ю.Е. Введение в выпуклую оптимизацию. М: МЦНМО, 2018.
  5. Bubeck S. Convex Optimization: Algorithms and Complexity. Foundations and Trends in Machine Learning, 2015. V. 8. P. 231–357.
  6. Поляк Б.Т. Введение в оптимизацию. М.: Наука, 2021.
  7. Бирюков А.Г., Гриневич А.И. О гарантированной точности решений задач вычислительной математики в арифметикесплавающейзапятойипеременнойдлиноймантиссы.ТрудыМФТИ,2012.Т.4,№3.C.171–180.
  8. Бирюков А.Г., Гриневич А.И. Метод оценки погрешностей округления решений задач вычислительной математики в арифметике с плавающей запятой, основанный на сравнении решений с изменяемой длиной мантиссы машинного числа. Труды МФТИ, 2013. Т. 5, № 2. C. 160–174.
  9. Biryukov A.G., Chernov A.V. On Numerical Estimates of Errors in Solving Convex Optimization Problems. Communications in Computer and Information Science, 2021. V. 1514.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».