SPATIAL OPTIMAL DISTURBANCES OF THREE-DIMENSIONAL AERODYNAMIC BOUNDARY LAYERS
- Authors: Boiko A.V.1, Demyanko K.V.1, Kusnetsova S.A.1,2, Nechepurenko Y.M.1, Zasko G.V1
-
Affiliations:
- Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences
- Institute of Physics and Technology (National Research University)
- Issue: Vol 65, No 1 (2025)
- Pages: 97-109
- Section: Mathematical physics
- URL: https://ogarev-online.ru/0044-4669/article/view/287388
- DOI: https://doi.org/10.31857/S0044466925010093
- EDN: https://elibrary.ru/CCNNQV
- ID: 287388
Cite item
Abstract
In the present paper, we propose a numerical method for modeling the downstream propagation of optimal disturbances in compressible boundary layers over three-dimensional aerodynamic configurations. At each integration step, the method projects the numerical solution of governing equations onto an invariant subspace of physically relevant eigenmodes; and the numerical integration is performed along the lines of disturbance propagation. The propagation of optimal disturbances is studied in a wide range of parameters for two configurations: a boundary layer over a swept wing of finite span, and a boundary layer over a prolate spheroid. It is found that the dependence of the disturbance energy amplification on the spanwise wavenumber has two local maxima. It is discussed how to combine the developed method with the modern approaches, which are designed to predict the onset of laminar-turbulent transition using the eN-method.
About the authors
A. V. Boiko
Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences
Email: yumnech@yandex.ru
Moscow, Russia
K. V. Demyanko
Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences
Email: yumnech@yandex.ru
Moscow, Russia
S. A. Kusnetsova
Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences; Institute of Physics and Technology (National Research University)
Email: yumnech@yandex.ru
Moscow, Russia; Dolgoprudny, Russia
Yu. M. Nechepurenko
Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences
Author for correspondence.
Email: yumnech@yandex.ru
Moscow, Russia
G. V Zasko
Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences
Email: yumnech@yandex.ru
Moscow, Russia
References
- Landahl M.T. Wave breakdown and turbulence // SIAM J. Appl. Math. 1975. V. 28.№4. P. 735–756.
- Ellingsen T., Palm E. Stability of linear flow // Phys. Fluids. 1975. V. 18.№4. P. 487–488.
- Landahl M.T. A note on an algebraic instability of inviscid parallel shear flows // J. Fluid. Mech. 1980. V. 98.№2. P. 243–251.
- Brandt L. The lift-up effect: the linear mechanism behind transition and turbulence in shear flows // Eur. J. Mech. B/Fluid. 2014. V. 47. P. 80–96.
- Schmid P.J., Henningson D.S. Stability and Transition in Shear Flows. Springer, 2001. 558 pp.
- Farrell B.F. The initial growth of disturbances in a baroclinic flow // J. Atmos. Sci. 1982. V. 39. P. 1663–1686.
- Farrell B.F. Optimal excitation of neutral Rossby waves // J. Atmos. Sci. 1988. V. 45.№2. P. 163–172.
- Farrell B.F. Optimal excitation of baroclinic waves // J. Atmos. Sci. 1989. V. 46.№9. P. 1193–1206.
- Farrell B.F. Optimal excitation of perturbations in viscous shear flow // Phys. Fluid. 1988. V. 31.№8. P. 2093–2102.
- Andersson P.A., Berggren M., Henningson D.S. Optimal disturbances and bypass transition in boundary layers // Phys. Fluid. 1999. V. 11.№1. P. 134–150.
- Luchini P. Reynolds-number-independent instability of the boundary layer over a flat surface: optimal perturbations // J. Fluid. Mech. 2000. V. 404. P. 289–309.
- Reshotko E., Tumin A. Spatial theory of optimal disturbances in a circular pipe flow // Phys. Fluid. 2001. V. 13. P. 991–996.
- Biau D., Bottaro A. Transient growth and minimal defects: Two possible initial paths of transition to turbulence in plane shear flows // Phys. Fluid. 2004. V. 16.№10. P. 3515–3529.
- Boiko A.V., Ivanov A.V., Kachanov Yu.S., Mischenko D.A., Nechepurenko Yu.M. Excitation of unsteady Gortler vortices by localized surface nonuniformities // Theor. Comput. Fluid Dyn. 2017. V. 31.№1. P. 67–88.
- Boronin S.A., Healey J.J., Sazhin S.S. Non-modal stability of round viscous jets // J. Fluid Mech. 2013. V. 716. P. 96–119.
- Ivanov O.O., Ashurov D.A., Gareev L.R., Vedeneev V.V. Non-modal perturbation growth in a laminar jet: An experimental study // J. Fluid Mech. 2023. V. 963. A8.
- Tumin A., Reshotko E. Spatial theory of optimal disturbances in boundary layers // Phys. Fluids. 2001. V. 13. P. 2097–2104.
- Tempelmann D., Hanifi A., Henningson D.S. Spatial optimal growth in three-dimensional boundary layers // J. Fluid Mech. 2010. V. 646. P. 5–37.
- Tempelmann D., Hanifi A., Henningson D.S. Spatial optimal growth in three-dimensional compressible boundary layers // J. Fluid Mech. 2012. V. 704. P. 251–279.
- Towne A., Colonius T. One-way spatial integration of hyperbolic equations // J. Comp. Phys. 2015. V. 300. P. 844–861.
- Rigas G., Colonius T., Beyar M. Stability of wall-bounded flows using one-way spatial integration of Navier-Stokes equations // 55-th AIAA Aerospace Sciences Meeting, Grapevine, Texas. AIAA Paper. 2017.№2017–1881.
- Zhu M., Towne A. Recursive one-way Navier-Stokes equations with PSE-like cost // J. Comp. Phys. 2023. V. 473. P. 111744.
- Godunov S.K. Modern Aspects of Linear Algebra. American Mathematical Society, Providence, USA, 1998.
- Zasko G.V., Boiko A.V., Demyanko K.V., Nechepurenko Yu.M. Simulating the propagation of boundary-layer disturbances by solving boundary-value and initial-value problems // Russ. J. Numer. Anal. Math. Model. 2024. V. 39.№1.
- Boiko A.V., Demyanko K.V., Zasko G.V., Nechepurenko Yu.M. On parabolization of equations governing small disturbances in 2D boundary layers // Thermophys. Aeromechanics. 2024. V. 31 (accepted).
- Boiko A.I., Demyanko K.V., Kirilovskiy S.V., Nechepurenko Yu.M., Poplavskaya T.V. Modeling of transonic transitional three dimensional flows for aerodynamic applications // AIAA J. 2021. V. 59. P. 1–13.
- Boiko A.V., Demyanko K.V., Nechepurenko Yu.M. On computing the location of laminar-turbulent transition in compressible boundary layers // Russ. J. Numer. Anal. Math. Model. 2017. V. 32. P. 1–12.
- Boiko A.V., Demyanko K.V., Inozemtsev A.V., Kirilovskiy S.V., Nechepurenko Yu.M., Paduchev A.P., Poplavskaya T.V. Determination of the Laminar–Turbulent Transition Location in Numerical Simulations of Subsonic and Transonic Flows Past a Flat Plate // Thermophys. Aeromechanics. 2019. V. 26.№5. P. 629–637.
- Kirilovskiy S.V., Boiko A.V., Demyanko K.V., Nechepurenko Yu.M., Poplavskaya T.V., Sidorenko A.A. On integrating the LOTRAN 3.0 package into the ANSYS fluent CFD software // AIP Conf. Proc. 2019. V. 2125. Art. 030098.
- Poplavskaya T.V., Boiko A.V., Demyanko K.V., Kirilovskiy S.V., Nechepurenko Yu.M. Numerical simulation of the transition to turbulence in subsonic and transonic flows // J. Phys.: Conf. Ser. 2019. V. 1359. Art. 012068.
- Kirilovskiy S.V., Boiko A.V., Demyanko K.V., Ivanov A.V., Nechepurenko Yu.M., Poplavskaya T.V. Numerical simulation of the laminar-turbulent transition on a swept wing in a subsonic flow // J. Phys.: Conf. Ser. 2019. V. 1359. Art. 012070.
- Menter F.R. Two-equation eddy-viscosity turbulence models for engineering applications // AIAA Journal. 1994. V. 32. P. 1598–1605.
- Hanifi A., Schmid P.J., Henningson D.S. Transient growth in compressible boundary layer flow // Phys. Fluid. 1996. V. 8. P. 826–837.
- Boiko A.V. Swept-Wing Boundary Layer Receptivity to a Steady Free-Stream Vortex Disturbance // Fluid Dynamics. 2002. V. 37. P. 37–45.
- Mack L.M. Boundary-layer Linear Stability theory // In AGARD Report No. 709: Special course on stability and transition of laminar flow. 1984. P. 3–81.
- Schmid P.J. Nonmodal stability theory // Ann. Rev. Fluid Mech. 2007. V. 39. P. 129–162.
- Golub G.H., van Loan C.F. Matrix Computations (4-th ed.). London: John Hopkins University Press. 2013. 784 p.
- Ivanov A.V., Mischenko D.A., Boiko A.V. Method of the description of the laminar-turbulent transition position on a swept wing in the flow with an enhanced level of free-stream turbulence // J. Appl. Mech. Tech. Phys. 2020. V. 61. P. 250–255.
- Boiko A.V., Ivanov A.V., Borodulin V.I., Mischenko D.A. Quantification technique of transition to turbulence in boundary layers using infrared thermography // Int. J. Heat Mass Transf. 2022. V. 183. P. 122065.
- Boiko A.V., Demyanko K.V., Nechepurenko Yu.M., Zasko G.V. On the use of probability-based methods for estimating the aerodynamic boundary-layer thickness // Fluid. 2021. V. 6.№8. P. 267.
- Kirilovskiy S.V., Boiko A.V., Demyanko K.V., Nechepurenko Yu.M., Poplavskaya T.V. Simulation of the laminarturbulent transition in the boundary layer of the swept wing in the subsonic flow at angles of attack // AIP Conf. Proc. 2020. V. 2288. P. 1–6.
- Kreplin H.P., Vollmers H., Meier H.U. Measurements of the wall shear stress on an inclined prolate spheroid // Z. Flugwiss. Weltraumforsch. 1982. V. 6. P. 248–252.
- Meier H.U. Experimental investigation of the boundary layer transition and separation on a body of revolution // Z. Flugwiss. Weltraumforsch. 1980. V. 4. P. 65–71.
- Boiko A.V. Receptivity of boundary layers to free stream axial vortices. DLR:Gottingen, Germany, 2000. IB 223–2000 A10. 60 p.
Supplementary files
