ON THE ACCURACY OF LOW- AND HIGH-ORDER LATTICE BOLTZMANN EQUATIONS IN APPLICATIONS TO SLOW ISOTHERMAL MICROFLOWS
- Authors: Ilyin O.V1
-
Affiliations:
- Federal Research Center Computer Science and Control, RAS
- Issue: Vol 64, No 9 (2024)
- Pages: 1760-1770
- Section: Mathematical physics
- URL: https://ogarev-online.ru/0044-4669/article/view/277187
- DOI: https://doi.org/10.31857/S0044466924090168
- EDN: https://elibrary.ru/WIPGOR
- ID: 277187
Cite item
Abstract
Keywords
About the authors
O. V Ilyin
Federal Research Center Computer Science and Control, RAS
Email: oilyin@gmail.com
Moscow, Russia
References
- Kruger T., Kusumaatmaja H., Kuzmin A., Shardt O., Silva G., Viggen E. The Lattice Boltzmann Method. Principles and Practice. Springer, 2017.
- McNamara G., Zanetti G. Use of the Boltzmann equation to simulate lattice gas automata // Phys. Rev. Lett. 1988. V 61. P. 2332-2335.
- Karniadakis G., Beskok A., Aluru N. Microflows and Nanoflows. Fundamentals and Simulation. Springer, 2005.
- Wang J., Chen L., Kang Q., Rahman S. The lattice Boltzmann method for isothermal micro-gaseous flow and its application in shale gas flow: A review // Int. J. Heat Mass Transf. 2016. V. 95. P. 94-108.
- Shan X., Yuan X., Chen H. Kinetic theory representation of hydrodynamics: a way beyond the Navier-Stokes equation // J. Fluid Mech. 2006. V. 550. P. 413—441.
- Shan X., He X. Discretization of the Velocity Space in the Solution of the Boltzmann Equation // Phys. Rev. Lett. 1998. V. 80. P. 65-67.
- Philippi P., Hegele Jr. L., dos Santos L., Surmas R. From the continuous to the lattice Boltzmann equation: The discretization problem and thermal models // Phys. Rev. E. 2006. V. 73. P. 056702.
- Surmas R., Ortiz C., Philippi P. Simulating thermohydrodynamics by finite difference solutions of the Boltzmann equation // Eur. Phys. J. 2009. V. 90. P. 81-90.
- Chikatamarla S., Karlin I. Lattices for the lattice Boltzmann method // Phys. Rev. E. 2009. V. 79. P. 046701.
- Shan X. General solution of lattices for Cartesian lattice Bhatanagar—Gross—Krook models// Phys. Rev E. 2010. V. 81. P. 036702.
- Shan X. The mathematical structure of the lattices of the lattice Boltzmann method //J. Comput. Sci. V 17. P. 475— 481.
- Feuchter C., Schleifenbaum W. High-order lattice Boltzmann models for wall-bounded flows at finite Knudsen numbers // Phys. Rev. E. 2016. V. 94. P. 013304.
- Spiller D., Dunweg B. Semiautomatic construction of lattice Boltzmann models // Phys. Rev. E. 2020. V 101. P. 043310.
- Meng J.-P., Zhang Y. Gauss-Hermite quadratures and accuracy of lattice Boltzmann models for non-equilibrium gas flows // Phys. Rev. E. 2011. V. 83. P. 036704.
- Shi Y., Wu L., Shan X. Accuracy of high-order lattice Boltzmann method for non-equilibrium gas flow // J. Fluid Mech. 2020. V. 907. P. A25.
- Gross E. Ziering S. Kinetic theory of Linear Shear flow // Phys. Fluid. 1958. V 1. P 215—223.
- Ambrus V., Sofonea V. Implementation of diffuse-reflection boundary conditions using lattice Boltzmann models based on half-space Gauss-Laguerre quadratures // Phys. Rev E. 2014. V. 89. P. 041301(R).
- Ambrus V., Sofonea V. Application of mixed quadrature lattice Boltzmann models for the simulation of Poiseuille flow at non-negligible values of the Knudsen number // J. Comput. Sci. 2016. V. 17. P. 403.
- Ambrus V., Sofonea V. Lattice Boltzmann models based on half-range Gauss-Hermite quadratures //J. Comput. Phys. 2016. V. 316. P. 760.
- Shi Y. Velocity discretization for lattice Boltzmann method for noncontinuum bounded gas flows at the micro- and nanoscale // Phys. Fluid. 2022. V. 34. P. 082013.
- Shi Y. Comparison of different Gaussian quadrature rules for lattice Boltzmann simulations of noncontinuum Couette flows: From the slip to free molecular flow regimes // Phys. Fluid. 2023. V. 35. P. 072015.
- Ilyin O. Intermediate Lattice Boltzmann-BGK method and its application to micro-flows // J. Phys.: Conf. Ser. 2019. V. 1163. P. 012030.
- Ilyin O. Gaussian Lattice Boltzmann method and its applications to rarefied flows // Phys. Fluid. 2020. V. 32. P. 012007.
- Di Staso G., Clercx H., Succi S., Toschi F. Lattice Boltzmann accelerated direct simulation Monte Carlo for dilute gas flow simulations // Phil. Trans. R. Soc. A. 2016. V. 374. P. 20160226.
- Di Staso G., Clercx H., Succi S., Toschi F. DSMC-LBM mapping scheme for rarefied and non-rarefied gas flows // J. Comput. Sci. 2016. V. 17. P. 357—369.
- Di Staso G., Srivastava S., Arlemark E., Clercx H. Toschi F. Hybrid lattice Boltzmann-direct simulation Monte Carlo approach for flows in three-dimensional geometries // Comput. Fluid. 2018. V. 172. P. 492-509.
- Aristov V., Ilyin O., Rogozin O. A hybrid numerical scheme based on coupling discrete-velocities models for the BGK and LBGK equations // AIP Conf. Proc. 2019. V. 2132. P. 060007.
- Aristov V., Ilyin O., Rogozin O. Kinetic multiscale scheme based on the discrete-velocity and lattice-Boltzmann methods // J. Comput. Sci. 2020. V. 40. P. 101064.
- Kim S., Pitsch H., Boyd I. Accuracy of higher-order lattice Boltzmann methods for microscale flows with finite Knudsen numbers // J. Comput. Phys. 2008. V. 227. P. 8655-8671.
- Tang G., Zhang Y., Emerson D. Lattice Boltzmann models for nonequilibrium gas flows // Phys. Rev. E. 2008. V. 77. P. 046701.
- Shi Y., Brookes P., Yap Y., Sader J. Accuracy of the lattice Boltzmann method for low-speed noncontinuum flows // Phys. Rev. E. 2011. V. 83. P. 045701(R).
- de Izarra L., Rouet J.-L., Izrar B. High-order lattice Boltzmann models for gas flow for a wide range of Knudsen numbers // Phys. Rev. E. 2011. V. 84. P. 066705.
- Chikatamarla S., Karlin I. Entropy and Galilean invariance of lattice Boltzmann theories// Phys. Rev. Lett. 2006. V. 97. P. 190601.
- Bardow A., Karlin I., Gusev A. Multispeed models in off-lattice Boltzmann simulations // Phys. Rev. E. 2008. V. 77. P. 025701(R).
- Ilyin O. Nonclassical Heat Transfer in a Microchannel and a Problem for Lattice Boltzmann Equations // Comp. Math. Math. Phys. 2023. V 63. P 2297-2305.
- Ansumali S., Karlin I. Kinetic boundary conditions in the lattice Boltzmann method // Phys. Rev. E. 2002. V. 66. P. 026311.
- Meng J., Zhang Y. Diffuse reflection boundary condition for high-order lattice Boltzmann models with streamingcollision mechanism // J. Comput. Phys. 2014. V. 258. P. 601-612.
- Cercignani C., Lampis M., Lorenzani S. Variational approach to gas flows in microchannels // Phys. Fluid. 2004. V. 16. P. 3426-3437.
- Ohwada T., Sone Y., Aoki K. Numerical analysis of the Poiseuille and thermal transpiration flows between two parallel plates on the basis of the Boltzmann equation for hard-sphere molecules // Phys. Fluid. 1989. V. 1. P. 2042-2049.
- Toschi F., Succi S. Lattice Boltzmann method at finite Knudsen numbers // Europhys. Lett. 2005. V. 69. P. 549.
- Montessori A., Prestininzi P., La Rocca M., Succi S. Lattice Boltzmann approach for complex nonequilibrium flows // Phys. Rev. E. 2015. V. 92. P. 043308.
- Kandhai D., Koponen A., Hoekstra A., Kataja M., Timonen J., Sloot P.M.A. Implementation Aspects of 3D Lattice-BGK: Boundaries, Accuracy, and a New Fast Relaxation Method // J. Comput. Phys. 1999. V. 150. P. 482-501.
- Bobylev A., Cercignani C. Discrete Velocity Models Without Nonphysical Invariants // J. Stat. Phys. 1999. V. 97. P. 677-686.
- Веденяпин В., Орлов Ю. О законах сохранения для полиномиальных гамильтонианов и для дискретных моделей уравнения Больцмана // ТМФ. 1999. Т. 121. C. 307-315.
- Vedenyapin V. Velocity inductive construction for mixtures // Transp. Theor. Stat. Phys. 1999. V. 28. P. 727-742.
- Bobylev A., Vinerean M. Construction of Discrete Kinetic Models with Given Invariants // J. Stat. Phys. 2008. V. 132. P. 153-170.
- Guo Z., Shi B., Zheng C. Chequerboard effects on spurious currents in the lattice Boltzmann equation for two-phase flows // Phil. Trans. R. Soc. A. 2011. V. 369. P. 2283-2291.
- Su W., Lindsay S., Liu H., Wu L. Comparative study of the discrete velocity and lattice Boltzmann methods for rarefied gas flows through irregular channels // Phys. Rev E. 2017. V. 96. P. 023309.
Supplementary files
