VERIFICATION OF A NUMERICAL ALGORITHM BASED ON QUASI-HYDRODYNAMIC EQUATIONS USING THE EXAMPLE OF MODELING THERMOGRAVITATIONAL CONVECTION
- Authors: Kiryushina M.A1, Elizarova T.G1, Yepikhin A.S2
-
Affiliations:
- Keldysh IAM RAS
- V.P.Ivannikov ISP RAS
- Issue: Vol 64, No 10 (2024)
- Pages: 1966-1976
- Section: Mathematical physics
- URL: https://ogarev-online.ru/0044-4669/article/view/277064
- DOI: https://doi.org/10.31857/S0044466924100143
- EDN: https://elibrary.ru/JYUUMW
- ID: 277064
Cite item
Abstract
About the authors
M. A Kiryushina
Keldysh IAM RAS
Email: m_ist@mail.ru
Moscow
T. G Elizarova
Keldysh IAM RASMoscow
A. S Yepikhin
V.P.Ivannikov ISP RASMoscow
References
- Гершуни Г.З., Жуховицкий Е.М., Непомнящий А.А. Устойчивость конвективных течений. М.: Физматлит, 1989. 320 с. ISBN 5-02-014004-X.
- Бердников Б.С., Гришков В.А. Ламинарно-турбулентный переход в свободном конвективном пограничном слое и теплоотдача вертикальных стенок // Труды 4-й РНКТ. 2006. Т. 3. Свободная конвекция. Тепломассообен при химических превращениях. С. 67–70.
- Простомолотов А.И., Верезуб Н.А. Механика процессов получения кристаллических материалов. М.: НИТУ “МИСиС”, 2023, ISBN 978-5-907560-57-4, 568 c.
- Wan D.C., Patnaik B.S., Wei G.W. A new benchmark quality solution for the buoyancy-driven cavity by discrete singular convolution // Numerical heat transfer, Part B. 2001. 40: Р. 199–228.
- Bingxin Zhao, Zhenfu Tian. High-resolution high-order upwind compact scheme-based numerical computation of the natural convection flows in a square cavity // Internat.Journal of Heat and Mass Transfer.2016. 98. P. 313–328.
- Trouette B. Lattice Boltzmann simulations of a time-dependent natural convection problem Computers-andmathematics-with-applications Volume 66, Issue 8, November 2013. P. 1360–1371.
- Oder J., Tisely I. Spectral Benchmark for Natural Convection Flow in a Tall Differentially Heated Cavity // 22nd International Conference Nuclear Energy for New Europe, September 9-12 BLED-SLOVENIA 2013. 227 p.
- Nader Ben Cheikh, Brahim Ben Beya & Taieb Lili. Benchmark Solution for Time-Dependent Natural Convection Flows with an Accelerated Full-Multigrid Method //Numerical Heat Transfer, Part B: Fundamentals: An International Journal of Computation and Methodology.2007. 52:2. P. 131–151. doi: 10.1080/10407790701347647
- Yong-Liang Feng, Shao-Long Guo, Wen-Quan Tao, Pierre Sagaut. Regularized thermal lattice Boltzmann method for natural convection with large temperature differences// Internat. Journal of Heat and Mass Transfer. 2018. 125. P. 1379–1391. 10.1016/j.ijheatmasstransfer.2018.05.051. hal-02114047.
- Поляков С.В., Чурбанов А.Г. Свободное программное обеспечение для математического моделирования // Препринты ИПМ им. М.В. Келдыша 2019, № 145. 32 с.
- Шеретов Ю.В. Динамика сплошных сред при пространственно-временном осреднении. М.: Ижевск, 2009.
- Елизарова Т.Г. Квазигазодинамические уравнения и методы расчета газодинамических течений. М.: Научный мир, 2007. Перевод Elizarova T.G., Quasi-Gas Dynamic equations // Springer, Berlin, 2009)
- Translation: Elizarova T.G., Sheretov Yu.V. (2001) Theoretical and Numerical Analysis of Quasi-Gasdynamic and Quasi-Fluid-Dynamic Equations // J. Comput. Math.and Math.Phys. 2001. V. 41. N 2. P. 219–234. Елизарова Т.Г., Калачинская И.С., Ключникова А.В., Шеретов Ю.В. Использование квазигидродинамических уравнений для моделирования тепловой конвекции при малых числах Прандтля // Ж. вычисл. матем. и матем. физ. 1998. T. 38. N 10. C. 1732–1742.
- Kraposhin M.V., Ryazanov D.A., Elizarova T.G. Numerical algorithm based on regularized equations for incompressible flow modeling and its implementation in OpenFOAM // Comp. Phys. Commun. 2022. V. 271. P. 108216.
- Кирюшина М.А., Елизарова Т.Г., Епихин А.С. Моделирование течения расплава в методе Чохральского в рамках открытого пакета OpenFOAM с применением квазигидродинамического алгоритма // Матем.моделирование. 2023. T. 35. N 8. C. 79–96.
Supplementary files
