EQUATIONS AND SYSTEMS OF THE M.M. LAVRENTIEV TYPE IN THE INVERSE PROBLEM OF MEMORY RECONSTRUCTION OF A VISCOELASTIC MEDIUM

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A nonlinear coefficient inverse problem is considered related to the partial reconstruction of the memory matrix of a viscoelastic medium based on the results of probing the medium by a family of wave fields excited by point sources. A spatially non-overdetermined formulation is investigated in which the manifolds of point sources and detectors do not coincide and have a total dimension equal to three. The requirements for these manifolds are established to ensure the unique solvability of the studied inverse problem. The result is achieved by reducing this problem to a chain of connected systems of M.M. Lavrentiev type linear integral equations.

作者简介

M. Kokurin

Mari State University

Email: kokurinm@yandex.ru
Yoshkar-Ola

参考

  1. Лаврентьев М.М. Об одной обратной задаче для волнового уравнения // Докл. АН СССР. 1964. Т. 157. № 3. С. 520–521.
  2. Лаврентьев М.М. Об одном классе обратных задач для дифференциальных уравнений // Докл. АН СССР. 1965. Т. 160. № 1. С. 32–35.
  3. Лаврентьев М.М., Романов В.Г., Шишатский С.П. Некорректные задачи математической физики и анализа. М.: Наука, 1980.
  4. Рамм А.Г. Многомерные обратные задачи рассеяния. М.: Мир, 1994.
  5. Бакушинский А.Б, Козлов А.И., Кокурин М.Ю. Об одной обратной задаче для трехмерного волнового уравнения // Ж. вычисл. матем. и матем. физ. 2003. Т. 47. № 3. С. 1201–1209.
  6. Кокурин М.Ю., Паймеров С.К. Об обратной коэффициентной задаче для волнового уравнения в ограниченной области // Ж. вычисл. матем. и матем. физ. 2008. Т. 48. № 1. С. 117–128.
  7. Klibanov M.V., Li J., Zhang W. Linear Lavrent’ev integral equation for the numerical solution of a nonlinear coefficient inverse problem // SIAM J. Appl. Math. 2021. V. 81. № 5. P. 1954–1978.
  8. Козлов А.И., Кокурин М.Ю. Об интегральных уравнениях типа М.М.Лаврентьева в коэффициентных обратных задачах для волновых уравнений // Ж. вычисл. матем. и матем. физ. 2021. Т. 61. № 9. С. 1492–1507.
  9. Кокурин М.Ю., Ключев В.В. Условия единственности и численная аппроксимация решения интегрального уравнения М.М. Лаврентьева // Сиб. журн. вычисл. матем. 2022. Т. 25. № 4. С. 435–451.
  10. Бакушинский А.Б., Леонов А.С. Экономичный численный метод решения коэффициентной обратной задачи для волнового уравнения в трехмерном пространстве // Ж. вычисл. матем. и матем. физ. 2018. Т. 58. № 4. С. 561–574.
  11. Бакушинский А.Б., Леонов А.С. Численное решение трехмерной коэффициентной обратной задачи для волнового уравнения с интегральными данными в цилиндрической области // Сиб. журн. вычисл. матем. 2019. Т. 22. № 4. P. 381–397.
  12. Кокурин М.Ю. О полноте произведений гармонических функций и единственности решения обратной задачи акустического зондирования // Матем. заметки. 2018. Т. 104. № 5. С. 708–716.
  13. Кокурин М.Ю. Полнота асимметричных произведений решений эллиптического уравнения второго порядка и единственность решения обратной задачи для волнового уравнения // Дифференц. уравнения. 2021. Т. 57. № 2. С. 255–264.
  14. Кокурин М.Ю. Полнота асимметричных произведений гармонических функций и единственность решения уравнения М.М. Лаврентьева в обратных задачах волнового зондирования // Изв. РАН. Сер. Матем. 2022. Т. 86. № 6. С. 101–122.
  15. Локшин А.А. Волновые уравнения с сингулярно запаздывающим временем // Докл. АН СССР. 1978. Т. 240. № 1. С. 43–46.
  16. Hanyga A., Seredynska M. Some effects of the memory kernel singularity on wave propagation and inversion in poroelastic media – I. Forward problems // Geophys. J. Inter. 1999. V. 137. P. 319–335.
  17. Ribodetti A., Hanyga A. Some effects of the memory kernel singularity on wave propagation and inversion in poroelastic media – II. Inversion // Geophys. J. Inter. 2004. V. 158. P. 426–442.
  18. Hanyga A. Wave propagation in media with singular memory // Math. and Comput. Model. 2001. V. 34. P. 1399–1421.
  19. Бухгейм А.Л., Дятлов Г.В., Кардаков В.Б., Танцерев Е.В. Единственность в одной обратной задаче для системы уравнений упругости // Сиб. матем. журн. 2004. Т. 45. № 4. С. 747–757.
  20. Купрадзе В.Д., Гегелиа Т.Г., Башелейшвили М.О., Бурчуладзе Т.В. Трехмерные задачи математической теории упругости и термоупругости. М.: Наука, 1976.
  21. Яхно В.Г. Обратные задачи для дифференциальных уравнений уппугости. Новосибирск: Наука, 1990.
  22. Романов В.Г. Об определении коэффициентов в уравнениях вязкоупругости // Сиб. матем. журн. 2014. Т. 55. № 3. С. 617–626.
  23. Durdiev D.K., Totieva Z.D. Kernel determination problems in hyperbolic integro–differential equations. Singapore: Springer, 2023.
  24. Работнов Ю.Н. Элементы наследственной механики твердых тел. М.: Наука, 1977.
  25. Ciambella J., Paolone A., Vidoli S. Memory decay rates of viscoelastic solids: not too slow, but not too fast either // Rheologica Acta. 2011. V. 50. P. 661–674.
  26. Metzler R., Nonnenmacher T.F. Fractional relaxation processes and fractional rheological models for the description of a class of viscoelastic materials // Inter. J. Plasticity. 2003. V. 19. P. 941–959.
  27. Михайлов В.П. Дифференциальные уравнения в частных производных. М.: Наука, 1976.
  28. Бицадзе А.В. О полигармонических функциях // Докл. АН СССР. 1987. Т. 294. № 3. С. 521–525.
  29. Hayman W.K., Korenblum B. Representation and uniqueness theorems for polyharmonic functions // J. d’Analyse Mathematique. 1993. V. 60. P. 113–133.
  30. Диткин В.А., Прудников А.П. Интегральные преобразования и вариационное исчисление. М.: Физматгиз, 1961.
  31. Стейн И., Вейс Г. Введение в гармонический анализ на евклидовых пространствах. М.: Мир, 1974.
  32. Ахиезер Н.И. Лекции по теории аппроксимации. М.: Наука, 1965.
  33. Федорюк М.В. Обыкновенные дифференциальные уравнения. М.: Лань, 2003.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».